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A block affine projection algorithm that is less complex but mathe-

matically equivalent to a recently proposed Gauss-Seidel pseudo affine

projection (GS-PAP) algorithm is proposed. This reduced complexity

is achieved by applying a partitioning method to the original sample-

by-sample algorithm. It is shown that the derived algorithm has better

convergence and tracking abilities than those of the NLMS algorithm.

Its application in an acoustic echo cancellation is investigated.

Introduction: Adaptive filtering is essential in applications such as

system identification, channel equalisation, active noise control, acoustic

echo cancellation, etc. The well-known normalised LMS (NLMS)

algorithm has been widely used but it has a slow asymptotic convergence.

The affine projection (AP) algorithm [1] can be considered as a

generalisation of the NLMS algorithm. Although too complex for

most applications, it provides a much improved convergence speed

compared to that of the NLMS. Many other affine projection algo-

rithms have been proposed (see, e.g. [2–5] and the references therein).

The sample-by-sample algorithms [2–3] are still complex for some

applications such as acoustic echo cancellation. Subband or block

processing variants [4–5] have much reduced complexity but it is still

desirable to have a uniform distribution of the computations for an

efficient implementation. In this Letter, a novel and efficient algorithm

called the fast block exact Gauss-Seidel pseudo affine projection

algorithm (FBEGS-PAP) is derived.

Let us take the following notations: x(n) is the input signal and y(n) is

the desired output signal. e(n) is the output error and ē(n) is the norma-

lised error. X(n)¼ [x(n), . . . , x(n� Lþ 1)]Twhere L is the filter length.

R(n) is the autocorrelation matrix of the signal. x(n)¼ [x(n), . . . ,
x(n�Nþ 1)]Twhere N is the affine projection order. d is a regularisation
factor. m is the step size. U(n)¼ [u(n), . . . , u(n� Lþ 1)]T is the approxi-

mated decorrelation vector. b is an N vector with only one nonzero

element that is unity at the top. H(n)¼ [h1(n), . . . , hL(n)]
T is the filter

coefficients vector. P is an N length vector and Pi, i¼ 0 to N� 1 is its ith

element. Below are the equations of the derived Gauss-Seidel pseudo

affine projection algorithm (GS-PAP) [2]:

Initialisations: Xð�1Þ ¼ 0;Rð�1Þ ¼ dI;Pð�1Þ

¼ b=d;Uð�1Þ ¼ 0;Hð�1Þ ¼ 0
ð1Þ

At each sample n� 0,

RðnÞ ¼ Rðn� 1Þ þ xðnÞxT ðnÞ � xðn� LÞxT ðn� LÞ ð2Þ

RðnÞPðnÞ ¼ b ðcan be solved by the Gauss-Seidel methodÞ ð3Þ

eðnÞ ¼ yðnÞ � XT ðnÞHðn� 1Þ ð4Þ

UðnÞ ¼
1

P0ðnÞ

XN�1

i¼0

PiðnÞXðn� iÞ ð5Þ

�eeðnÞ ¼
m

UT ðnÞUðnÞ þ d
eðnÞ ð6Þ

HðnÞ ¼ Hðn� 1Þ þ UðnÞ�eeðnÞ ð7Þ

It can be seen that (6) and (7) lead to a similar update equation as the

NLMS algorithm. The basic idea of reducing complexity in the GS-PAP

adopted in this Letter is similar to that used in [6] for deriving the

modified fast exact NLMS (MFENLMS) algorithm. Denote M as the

block size. We partition the vectors X(n), U(n) and H(n) according to:

XT ðnÞ ¼ ½XT
a ðnÞX

T
b ðn� 2M Þ�; UT ðnÞ ¼ ½UT

a ðnÞU
T
b ðn� 2M Þ�;

HT ðnÞ ¼ ½HT
a ðnÞH

T
b ðnÞ� with XT

a ðnÞ ¼ ½xðnÞ; . . . ; xðn� 2M þ 1Þ�;

UT
a ðnÞ ¼ ½uðnÞ; . . . ; uðn� 2M þ 1Þ�; HT

a ðnÞ ¼ ½h1ðnÞ; . . . ; h2M ðnÞ�;

XT
b ðnÞ ¼ ½xðn� 2M Þ; . . . ; xðn� Lþ 1Þ�;

UT
b ðnÞ ¼ ½uðn� 2M Þ; . . . ; uðn� Lþ 1Þ�;

HT
b ðnÞ ¼ ½h2Mþ1ðnÞ; . . . ; hLðnÞ�

The equations (4) to (7) of the GS-PAP algorithm can be partitioned

into an ‘updating’ part and a ‘fixed’ filtering part as in [6]. Computation

of the ‘updating’ part with a lower order of complexity is performed at

each recursion step, whereas the ‘fixed’ part can be computed from M

recursion steps. Therefore, the non-uniformly distribution of the arith-

metic operations within a block of M samples, encountered in other

block algorithms [5–6], can be avoided.

Equation (7) is repeatedly substituted in (4) taking into account the

previous partitions. The following equations are obtained for

i¼ n, . . . , n�Mþ 1:

ŷyaðiÞ ¼ XT
a ðiÞH

T
a ðiÞ þ

XMþi�n

j¼1

sjði� 2M Þ�eeði� jÞ ð8Þ

sjði� 2M Þ ¼ UT
b ði� 2M � jÞXbði� 2M Þ ð9Þ

ŷybðn�M Þ ¼ UT
b ði� 2M ÞHbðn�M Þ ð10Þ

HaðiÞ ¼ Haði� 1Þ þ Xaði� 1Þ�eeði� 1Þ ð11Þ

HbðnÞ ¼ Hbðn�M Þ þ
XL

j¼1

Ubðn� 2M � jÞ�eeðn� jÞ ð12Þ

eðiÞ ¼ yðiÞ � ŷyaðiÞ � ŷybðn�M Þ ð13Þ

The fast block exact GS-PAP (FBEGS-PAP) algorithm includes (2)–(3),

(5)–(6), (8)–(13). All the equations excepting (10) and (12) are

performed every step. Their complexity is small because usually M

and N are much smaller than the filter length L. The ‘filtering part’ ((10)

and (12)) depends on the data from the last block. This part involves the

computation ofM successive outputs of a fixed coefficient filter. Several

fast FIR filtering procedures that reduce significantly the number of

operations exist (e.g. based on linear or circular convolution). We used

the efficient FIR filtering architecture presented in Fig. 2 of [7] for cases

when the block size is a power of two (M¼ 2k).

The numerical complexities of the algorithms are measured by counting

the number of multiplications and divisions per recursion. Therefore we

obtain: CNLMS¼ 2Lþ 4; CMFENLMS¼ 10Mþ 1þ [2(3/4)k(L� 2M)];

CFBEGS�PAP ¼ 10M þ 2þ ½2ð3=4Þk ðL� 2M Þ� þ N2 þ 4N;

CGS�PAP ¼ 2Lþ N2 þ 3N þ 5
ð14Þ

The increase in complexity of the FBEGS-PAP algorithm in comparison

with that of the MFENLMS is rather small for the usual values of N and

does not depend on L or M. The proper choice of the block size is of

crucial importance in reducing the number of multiplies and divisions.

As shown in [6], there is an ‘optimal’ block size value of M that mini-

mises its complexity if the projection order is fixed. It can be easily

deduced that the value of the block size that minimises the number of

multiplies and divisions is higher for a higher filter length (e.g. if N¼ 10,

the ‘optimal’ value of M is 8 for L¼ 256, and is 32 for L¼ 1024, etc.).

Fig. 1 Learning curves of FBEGS-PAP and NLMS algorithms for coloured
excitation under sudden change in echo path

(L¼ 256, N¼ 10, M¼ 8, m¼ 1)

Results: We tested the convergence and tracking abilities of the

FBEGS-PAP algorithm using coloured noise and speech (white

noise has also been used but not shown here) as excitation signals

in an acoustic echo cancellation example. As expected, because it is

mathematically equivalent to the GS-PAP, it inherits its performances.

An example of the superior convergence and tracking abilities of the
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FBEGS-PAP algorithm as compared to the NLMS when using a

coloured excitation signal is shown in Fig. 1. In our simulations, we

used L¼ 256, N¼ 10, M¼ 8, m¼ 1. The impulse response of the

measured car cabin impulse response was truncated to 259 coeffi-

cients, so that the theoretical minimum misalignment was calculated

to be �49.06 dB. The tracking abilities of the algorithms were

investigated by a sudden change in the sign of the measured echo

path coefficients after 25000 samples. The convergence of the algo-

rithms was compared using the squared norm of the difference

between the car cabin impulse response and the adaptive filter (in

dB). The FBEGS-PAP algorithm was stable in all our 32-bit floating-

point simulations and the learning curves were virtually identical with

those of the GS-PAP in double precision simulations (Fig. 1). Table 1

compares the numerical complexity of the considered algorithms for

different filter lengths, block sizes and projection orders. It can be

seen that the complexity of the FBEGS-PAP is significantly reduced

in comparison with those of the NLMS and the GS-PAP. Also, it is

marginally more complex than that of the MFENLMS for moderate

values of the affine projection order (see Table 1).

Table 1: Computational complexity (number of multiplications
and divisions per recursion) of investigated algorithms
for different filter lengths, L, block sizes, M, and
projection orders, N

Algorithm

L¼ 256, M¼ 8 L¼ 1024,N¼ 10

N¼ 10 N¼ 4 M¼ 32 M¼ 8

FBEGS-PAP 425 317 918 1073

GS-PAP [2] 647 545 2183 2183

MFENLMS [6] 284 284 777 932

NLMS 516 516 2052 2052

Conclusion: We have proposed an efficient implementation of the

GS-PAP algorithm. It was proved that the FBEGS-PAP algorithm has

significant better performances and reduced complexity in compa-

rison with those of the NLMS. Its stability in 32-bit floating-point

operations and uniform distribution of operations make it attractive

for applications in acoustic echo cancellation systems.
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