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An efficient multichannel affine projection algorithm for active noise

control (ANC) systems is proposed. It is based on dichotomous

co-ordinate descent iterations. It is shown that the proposed algorithm

has a much lower complexity than the previously published multi-

channel modified filtered-x affine projection algorithm for ANC, with

similar convergence properties.

Introduction: Active noise control systems are being increasingly

researched and developed [1]. In such systems, an adaptive controller

is used to optimally cancel unwanted acoustic noise. The delay

compensated modified filtered-x structure [2] for active noise control

systems using FIR adaptive filtering is presented in Fig. 1. It is well

known that the stochastic gradient descent algorithms have poor

convergence speed, while the recursive-least-squares algorithms are

too complex and often numerically unstable (see, e.g. [3] and

references therein). The affine projection algorithms can provide a

much improved convergence speed compared to stochastic gradient

descent algorithms, without high increase of the computational load

or the instability often found in recursive-least-squares algorithms. An

affine projection algorithm for multichannel active noise control

called the modified filtered-x affine projection algorithm (MFX-AP)

has been presented in [3]. This algorithm is still too complex for

practical applications. Therefore, simpler, fast affine projection (FAP)

algorithms suitable for active noise control and based on some

approximations of the original affine projection algorithm have been

proposed recently (see, e.g. [3, 4]). All these algorithms need at least

one inverse matrix computation, which is very complex for large

matrices and prone to numerical instability. In this Letter, we propose

the use of the dichotomous co-ordinate descent (DCD) iterations

[5, 6] for solving the implicit linear system of the MFX-AP equations

and avoid the inverse matrix computation. The resulting novel

efficient algorithm is called the modified filtered-x dichotomous

co-ordinate descent affine projection (MFX-DCDAP) algorithm. It

includes the autocorrelation matrix updating procedure used in other

fast affine projection algorithms for active noise control (ANC) [3, 4].

Fig. 1 Delay compensated modified filtered-x structure for active noise
control

In the context of ANC systems, a multichannel feedforward system

using an adaptive FIR filter with a modified filtered-x structure and with

filter weights adapted with a classical affine projection (AP) algorithm

can be described by the following equations (1)–(5) [3]:
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The variable n refers to the discrete time, I is the number of reference

sensors, J represents the number of actuators, K is the number of error

sensors, L is the length of the adaptive FIR filters, M is the length of

(fixed) FIR filters modelling the plant and N is the projection order.

The vectors xi¼ [xi(n), . . . , xi (n� Lþ 1)]T and x0i¼ [xi(n), . . . , xi

(n�Mþ 1)]T consist of the last L and M samples of the reference

signal xi(n), respectively. The vector yj¼ [yj(n), . . . , yj(n�Mþ 1)]T

consists of the last M samples of the actuator signal yj(n). The samples

of the filtered reference signal vi,j,k(n) are collected in the IJ�K,

IJL�K and IJL�KN matrices
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The vectors d̂(n)¼ [d̂1(n), d̂2(n), . . . , d̂K(n)] and ê(n)¼ [ê1(n),

ê2(n), . . . , êK(n)] consist of estimates d̂k(n) of the primary sound field

dk(n) and of alternative error signals samples êk(n), both computed in

delay-compensated modified filtered-x structures. The vectors

D̂(n)¼ [d̂(n), d̂(n� 1), . . . , d̂(n�Nþ 1)] and Ê(n)¼ [ê(n), ê(n� 1),

. . . , ê(n�Nþ 1)] have both 1�KN size. The vector hj,k¼ [hj,k,1, . . . ,

hj,k,M]T consists of taps hj,k,m of the fixed FIR filter modelling the plant

between signals yj(n) and ek(n). The IJL� 1 vector w(n)¼ [[w1,1,1(n)

� � � wI,J,1(n)] � � � [w1,1,L(n) � � � wI,J,L(n)]]T consists of the coefficients

from all the adaptive FIR filters linking the signals xi(n) and yj(n).

Finally, ek(n) is the kth error sensor signal, m is a normalised conver-

gence gain 0� m� 1, I is an identity matrix of size KN�KN and d is

the regularisation factor.

If we note by R(n) the autocorrelation matrix and by P(n)

PðnÞ ¼ ðVT ðnÞVðnÞ þ dIÞ�1ÊT ðnÞ ¼ ðRðnÞ þ dIÞ�1ÊT ðnÞ ð6Þ

Equation (5) becomes:
wðnþ 1Þ ¼ wðnÞ � mVðnÞPðnÞ ð7Þ

We propose use of the DCD method for solving the linear system

(R(n)þ dI)P(n)¼ ÊT(n). The DCD algorithm is based on binary

representation of elements of the solution vector with Mb bits within

an amplitude range [�H, H]. The iterative approximation of the solu-

tion vector P(n) starts by updating the most significant bit of its

elements and proceeds to less significant bits. If a bit update happens,

the iteration is called ‘successful’, and the vector ÊT(n) is updated. The

parameter Nupd represents the maximum number of ‘successful’ itera-

tions. More details about the DCD algorithm can be found in [5, 6]. If

H is a power of two the DCD algorithm is implemented only with

additions and bit shifts operations [5]. Thus, the DCD algorithm can be

implemented without explicit multiplications and divisions. The code

describing the dichotomous co-ordinate descent algorithm can be found

in [6]. The peak complexity of the DCD algorithm for given Mb and

Nupd, is N(2NupdþMb) shift-accumulation (SACs) operations.

The numerical complexities of the considered algorithms are

measured by the number of multiplications per algorithm iteration [3]:

CMFX�DCDAP ¼ IJKðM þ 2Lþ 2KN Þ þ IJLþ JKM ð8Þ

CMFX�AP ¼ IJLð2þ 2KN þ K2N2Þ þ JKM ð1þ I Þ

þ K2N2 þ K3N3=2 ð9Þ

CMFX�LMS ¼ IJKðM þ 2LÞ þ IJLþ JKM ð10Þ

Table 1: Comparison of computational load of MFX-DCDAP
algorithm with other delay-compensated modified
filtered-x algorithms for ANC

Algorithm for multichannel
ANC, L¼ 100, M¼ 64, N¼ 5

Multiplies per iteration
for I¼ 1, J¼ 1, K¼ 1

Multiplies per iteration
for I¼ 1, J¼ 3, K¼ 2

MFX-LMS 428 2268

MFX-DCDAP 438 2388

MFX-AP 3916 37 968

Table 1 evaluates the complexity of the considered algorithms for

both monochannel and multichannel cases. It can be seen that the
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complexity of the MFX-DCDAP is much lower than that of MFX-AP,

and only slightly more complex than MFX-LMS.

Results: The MFX-DCDAP algorithm was simulated and compared

to the previously published multichannel modified filtered-x LMS

algorithm (MFX-LMS) and the multichannel modified filtered-x

affine projection algorithm (MFX-AP) [3]. We used in our simulation

I¼ 1, J¼ 3, K¼ 2 and the reference signal was a white noise with zero

mean and variance one. The simulations were performed with acous-

tic transfer functions experimentally measured in a duct. The impulse

responses used for the multichannel acoustic plant had 64 samples

each (M¼ 64), while the adaptive filters had 100 coefficients each

(L¼ 100). For all the affine projection algorithms, a value of 0.9 was

used for the step size m and the regularisation factors were

d¼ d2¼ 2� 103. The step size m for the MFX-LMS algorithm was

2� 10�5 and the parameter H of the DCD algorithm was set to 1=128.

The convergence performances have been averaged over 100 simula-

tions. The performance of the algorithms was measured by

Attenuation ðdBÞ ¼ 10 � log10

P
k E½e2

k ðnÞ�P
k E½d2

k ðnÞ�
ð11Þ

Fig. 2a shows that the implementation using eight DCD iterations and

16 bits provides almost identical performance with the method using the

ideal inverse matrix. In this case the theoretical peak complexity is 160

SACs. Also, it can be seen in Fig. 2a that if an average loss of about

0.5 dB is allowed, the number of bits can be reduced to four and the

number of DCD iterations to eight. Therefore, in this case, the peak

DCD complexity is 80 SACs. However, the average DCD complexity is

lower than the theoretical peak complexity in both cases (90 and 35,

respectively). The DCD part increases the number of additions, but has

no divisions or multiplications. Therefore, Nupd¼ 8 and Mb¼ 16 were

used in the following simulation of the MFX-DCDAP algorithm.

Fig. 2b compares the performance of the considered algorithms, with

ideal plant models, for a multichannel ANC system, obtained from

MatlabTM implementations of the algorithms. It can be seen that the

MFX-DCDAP algorithm has almost identical performance with the

previously published MFX-AP algorithm. As expected, the convergence

performance of the affine projection algorithms is better than that of

the LMS-based algorithm.

Fig. 2 Attenuation difference over 25 000 iterations between convergence
curves of algorithm using ideal matrix inverse and algorithm using diff-
erent numbers of DCD iterations and bits and convergence curves of
multichannel delay-compensated modified filtered-x algorithms for ANC,
with ideal plant models

I¼ 1, J¼ 3, K¼ 2, L¼ 100, M¼ 64, N¼ 5
a Attenuation difference
b Convergence curves

Conclusions: The modified filtered-x dichotomous co-ordinate

descent affine projection (MFX-DCDAP) algorithm was introduced

for practical active noise control systems using FIR adaptive filtering

and was compared with the previously published MFX-AP and MFX-

LMS algorithms. It was shown that MFX-DCDAP algorithm obtains

almost identical performance with the much complex MFX-AP

algorithm. Also, it was shown that it provides a significant improve-

ment of convergence speed over the MFX-LMS algorithm, it being

only slightly more complex than the latter. Therefore, it is a good

candidate for practical real-time implementations.
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