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Abstract: A new affine projection (AP) algorithm based 

on dichotomous coordinate descent (DCD) iterations has 

been recently proposed for acoustic echo cancellation 

(AEC). It uses a constant step size parameter and, 

therefore, has to compromise between fast convergence 
and tracking on the one hand, and low misadjustment 

and robustness to the presence and variations of a near-

end signal on the other hand. In this paper we propose a 

variable step-size (VSS) version of the DCD-AP 

algorithm (VSS-DCD-AP) that does not require any a 
priori information about the acoustic environment. It is 

shown that the new algorithm is robust against near-end 

signal variations, including double-talk (DT).  

 

Index Terms: dichotomous coordinate descent 

algorithm, affine projection algorithm, acoustic echo 

cancellation, double-talk  

 

 

I. INTRODUCTION  

 

In echo cancellation systems, an adaptive filter is used 

to reduce the echo. The echo path is usually modeled 

by a linear filter. The well known normalized least-

mean-square (NLMS) algorithm has been widely used, 

but converges very slowly. The affine projection 

algorithm (APA) can be considered as a generalizat ion 

of the NLMS algorithm that provides a much 

improved convergence speed compared to LMS-type 

algorithms, although it is sensitive to high level of 

noise [1]. It has a performance that rivals with the 

more complex recursive least-squares (RLS) 

algorithms in many situations.  However, the fast 

affine projection (FAP) algorithm proposed in [2] 

suffers from numerical instability when implemented 

with an embedded fast RLS algorithm.  A key element 

in other proposed FAP algorithms is the approach to 

solve the encountered linear system. The choice of the 

approach (i.e., direct or iterat ive) determines the 

stability and robustness of the FAP algorithm. Several 

proposed FAP algorithms use an approximation that 

leads to simpler algorithms if the step size is 1  

(non-relaxed case) or close to 1 (e.g. 17.0   ) [3-

6]. For such values, these algorithms have a fast 

convergence, but they exhib it a high sensitivity to 

noisy inputs. They employ   some approximat ions that 

degrade the performance of the original APA. A low 

complexity implementation of the APA has been 

recently proposed in [7]. It uses a novel recursive 

filtering technique and filtering update that is 

incorporated in the dichotomous coordinate descent 

method (DCD), orig inally proposed in [8] and 

enhanced in [9]. This leads to an important reduction 

in the number of mult iplications needed by the AP 

algorithm. However, the version presented in [7] has 

a fixed step size and a variable step size version could 

be a more reliable solution in case of near-end signal 

variations, including double-talk. Such a solution has 

been presented in [10] and the VSS-APA algorithm 

proved to be more robust in adverse conditions than 

the APA. The same step size computational method 

can be adapted to the less computationally demanding 
DCD-AP algorithm.   

The outline of the paper is as follows. The VSS-

DCD-AP algorithm is described in Section II. In the 

same section, the computational complexity of the 

proposed algorithm is derived and compared with that 

of VSS-APA. In Section III, the behavior of VSS-

DCD-AP algorithm for echo cancellation in single-

talk and double-talk scenarios is examined. A 

comparison of the proposed algorithm with VSS-

APA is performed. Section IV concludes the paper. 

 

II. THE VSS-DCD-AP ALGORITHM  

 

Let us follow the notation used in deriving the DCD-

AP (see [7]): L is the filter length, K is the projection 

order,   a regularization parameter,   a forgetting 

factor; nx , nd , nĥ ,  10 ,...,  K
nnn μ , are the 

excitation signal, desired signal, an 1  L  vector of 

adaptive filter taps, and variable step size vector 

respectively at time instant n; 

 TKnnnn 11  ...  xxxX  where 

 TLnnnn xxx 11  ... x ;  TKnnnn ddd 11  ... d ; 

KI  is a KK    identity matrix and  T  denotes the 

matrix transpose. The DCD algorithm is used to solve 

the linear system   n
K
nnn eεR

10 ,...,diag   (see 

Table 1). The orig inal DCD algorithm updates a 

solution of a linear system of equations in directions 

of Euclidian coordinates in the cyclic order and with 

a step size   that takes one of bM  (number of bits) 

predefined values corresponding to a binary 

representation bounded by an interval  HH  ,  [8,9]. 

The algorithm starts the iterative search from the 

most significant bits of the solution and continues 

until the least significant bits were updated. The 

algorithm complexity is limited by uN , the 

maximum number of “successful” iterations. More 

details about this original DCD version can be found 

in [8]. A more efficient DCD version was proposed in 

[9]. This new version finds a ‘leading’ (pth) element 

of the solution to be updated (step 11 of Table 1). It 

can be seen from Table 1 that the filtering update is 



incorporated in the DCD procedure (step 17). More 

details about the DCD-AP algorithm can be found in 

[7]. The step sizes are computed as in [10] (see steps 

6-9 from Table 1).   

 
Table 1. The VSS-DCD-AP algorithm. 
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p Mmr   and2/ ,R  

13                2/ ,1   mm  

14                 if bMm  , go to step 1 

15 
                 pp

n
p
n rsignˆˆ   

16 
                 )(sign p

n
pr Rrr   
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                 pn

p

nn r   xhh signˆˆ
1  

Total: 862  KKL  Mults + K div + K  sqrt + 

    3721 2  buu MNKKNL  adds 

 

The step-size equations of the VSS-APA and proposed 

VSS-DCD-AP algorithm do not depend explicitly on 

the near-end signal, even though they were derived by 

taking into account its presence; consequently, a 

robust behaviour under near-end signal variations 

(e.g., background noise variations and double-talk) is 

expected. Moreover, since only the parameters 

available from the adaptive filter are required and 

there is no need for a priori informat ion about the 

acoustic environment, the proposed algorithm is easy 
to control in practice [10].  

The total computational complexity of the APA is 

KPKL m 32   multip licat ions and KPKL m 22   

additions, where  3KOPm   and  3KOPa   [7]. 

The VSS part adds K36 mult iplications, 

K42 additions, K square roots and K divisions. 

Table 2 shows the number of mult iplications and 

additions of the investigated algorithms for different 

L, K and uN . It can be seen that the number of 

multip licat ions of the VSS-DCD-AP algorithm is 

several times smaller than that of the VSS-AP 

algorithm.   

Table 2. The number of multiplications and additions of the 

investigated algorithms for different L, K, and uN . 

Algorithm L K +   

VSS-APA  512 4 4186 4190 

8 8754 8758 

1024 4 8282 8286 

8 16946 16950 

VSS-

DCD-AP 

512 4 1uN 1095 560 

 4uN 2655 

 8uN 4735 

8 1uN 1179 632 

 4uN 2763 

 8uN 4875 

1024 4 1uN 2119 1072 

 4uN 5215 

 8uN 9343 

8 1uN 2203 1144 

 4uN 5323 

 8uN 9483 

 

Simulation results shown in the next section revealed 



that, in most cases, VSS-DCD-AP algorithm 

performance matches that of VSS-APA algorithm for 

4uN  . It can be seen in Table 2 that, for 4uN  , 

the VSS-DCD-AP algorithm is less complex than the 

VSS-APA in terms of the total number of additions 

and multip licat ions. The same conclusion can be 

obtained if 8uN   and K=8. Therefore, longer filter 

lengths, higher projection orders can be used by VSS-

DCD-AP algorithm for a similar complexity with the 

VSS-APA algorithm but with improved performance. 

The number of additions of the VSS-DCD-AP 

algorithm increases linearly with uN  and therefore, 

for smal p rojection orders (e.g. K=2 and high uN  (e.g. 

8uN  ), it could be higher than that of the VSS-APA 

algorithm. 

 

III. SIMULATION RESULTS  

 

The simulations were performed in an AEC context  

and the VSS-APA and VSS-DCD-AP were compared. 

The length of the adaptive filter is set to 512 

coefficients. The measured impulse response of the 

acoustic echo path is plotted in Fig. 1(a) (the sampling 

rate is 8 kHz); its entire length has 1024 coefficients. 

This length is truncated to the first 512 coefficients for 

a first set of experiments performed in an exact  

modeling case. Then, the entire length of the acoustic 

impulse response is used for a second set of 

experiments performed in  the under-modeling case 
[10]. 

The simulations are performed in an exact modeling  

scenario ( 512 LN ), and in an under-modeling 

scenario, using the entire acoustic impulse response 

from Fig. 1(a), while the length of the adaptive filter 

remains the same ( 512 ,1024  LN ). The 

performance for the first scenario is evaluated in terms 

of the normalized misalignment (in dB), defined as 

 hhh /ˆlog20 10 n . In the second scenario, the 

expression of the normalized misalignment is 

evaluated by padding the vector of the adaptive filter 

coefficients with N – L zeros, i.e ., 

  h0hh / ˆlog20 10
T
N-Ln . An alternative to 

compare the performance of the algorithms is to use 

the Echo Return Loss Enhancement (ERLE). It is a 

standard parameter of adaptive filter quality 

evaluation in echo cancellation. However, our 

simulations have shown that the ERLE performances 

of the investigated algorithms are close. Four ERLE 

curves cannot be individually discerned in most plots 

and therefore, the ERLE plots were not included in 

this paper.   

The regularizat ion factor for both algorithms is  
225 xK   and   is the forgetting factor chosen as 

1
1

6 L
  


 [10]. In all experiments the parameter 

bM  was set to 16 and 102H . In the following  

experiments, in order to approach the context of 

typical AEC applications, only the speech sequence 

from Fig. 1(b) will be used as the far-end signal. 

Single-talk and double-talk scenarios are considered. 

The DCD procedure requires the execution of a 

number of iterations in order to obtain an acceptable 

accuracy in the solution of the linear system. A ll 

experiments confirmed that the performance of the 

VSS-DCD-AP algorithm is increasing when 

increasing the parameter uN . In most cases, using 

more DCD iterat ions in the VSS-DCD-AP algorithm 

give closer performance with the more complex VSS-

APA algorithm.  

 Single-talk scenario 

 

 

Fig. 1.  (a) Measured room acoustic impulse response. 
Its length is truncated to the first 512 coefficients 

(before the dotted line) for the set of experiments 

performed in an exact modeling case (L = N = 512). 

The entire length is used for the set of experiments 

performed in the under-modeling case (L = 512, N = 
1024); (b) Far-end continuous real speech signal used 

in the experiments; (c) The background noise with 

variable SNR; (d) Near-end speech signal used in the 

experiments performed in the double-talk case. 

 



For the first set of simulations (Figs. 2 and 3) the 

value of the projection order was 4K  . Fig. 2 shows 

the misalignment curve in case of exact modeling 

while Fig. 3 considers the under-modelling case.  

 

The robustness of the VSS-DCD-AP algorithm in the 

under-modelling case and its close performance to 

VSS-APA ( 4uN ) is verified. There are 

insignificant differences between the initial 

convergence rates in all three figures. Fig. 4 shows 

the convergence speed and misalignment that can be 

obtained with a higher project ion order ( 8K ).  

A variation of the background noise shown in Fig. 1c 

is considered in Figs. 5 and 6. The SNR decreases 

from 30 dB to 10 dB at 14th second for a period of 14 

seconds. The behavior of the algorithms is evaluated 

in the exact modeling case (Fig. 5) and under-

modeling case (Fig. 6), for the projection 

order 4K  . It can be noticed that the proposed 

algorithm matches the VSS-APA algorithm in this 

situation if 8uN   and 4uN  .  

Another possible scenario in AEC is the change of 

the acoustic echo path. The results of such an 

experiment are depicted in Figs. 7 and 8, where the 

acoustic impulse response was shifted to the right by 

12 samples after 21 seconds from the debut of the 

 

Fig. 2 Misalignment of VSS-APA and VSS-DCD-AP. 
Single-talk case, L = 512, K = 4, SNR = 30dB. 

 

 

Fig. 4 Misalignment of VSS-APA and VSS-DCD-

AP. Single-talk case, L = 1024, K = 8, SNR = 30dB 

(under-modeling case).  

 

 

Fig. 3 Misalignment of VSS-APA and VSS-DCD-

AP. Single-talk case, L = 1024, K = 4, SNR = 30dB 

(under-modeling case).  

 

 

Fig. 5 Misalignment of VSS-APA and VSS-DCD-

AP. Background noise variation at 14 s for a period of 

14 seconds (SNR decreases from 30 dB to 10 dB). 

Other conditions are the same as in Fig. 2.  

 

 

Fig. 6 Misalignment of VSS-APA and VSS-DCD-

AP. Background noise variation at 14 s for a period of 

14 seconds (SNR decreases from 30 dB to 10 dB). 

Other conditions are the same as in Fig. 3.  

 



adaptive process.  

Fig. 7 shows the results in the exact modeling case, 

while Fig. 8 shows the results in the under-modeling 

case. It can be noticed the loss in performance in the 

under-modeling case for both the algorithms. 

However, their tracking capabilities are good. The 

VSS-DCD-AP algorithm t racking ability increases 

with uN . Other simulations (not shown here) have 

indicated that the tracking reaction of the VSS-DCD-

AP algorithm improves as the projection order 

increases. This finding is consistent with the 

conclusion of previous works on VSS-APA [10]. 

 

 Double-talk scenario 

The most challenging problem in echo cancellation is 

considered to be the double-talk situation. Such a 

scenario is considered in the simulations using the 

speech signals from Fig. 1. In Figs. 9 and 10, the VSS-

APA and VSS-DCD-AP algorithms are involved 

without the use of a DTD and 4K  . It is confirmed  

that a double talk detector is needed. The VSS-APA is 

the most affected. Also, the misalignment jump is 

higher as uN  increases. As shown in [10], a simple 

DTD (Geigel algorithm) is good enough for the VSS-

 

Fig. 7 Misalignment of VSS-APA and VSS-DCD-

AP. Echo path change at 21 s. Other conditions are the 

same as in Fig. 2.  

 

 

Fig. 8 Misalignment of VSS-APA and VSS-DCD-

AP. Echo path change at 21 s. Other conditions are the 

same as in Fig. 3.  

 

 

Fig. 9 Misalignment of VSS-APA and VSS-DCD-

AP. Double-talk case and no DTD used. Other 

conditions are the same as in Fig. 2.  

 

 

Fig. 10 Misalignment of VSS-APA, and VSS-DCD-

AP. Double-talk case and no DTD used. Other 

conditions are the same as in Fig. 3.  

 

 

Fig. 11 Misalignment of VSS-APA and VSS-DCD-

AP. Double-talk case and Geigel DTD used. Other 

conditions are the same as in Fig. 2.  



APA algorithm. Its settings are chosen assuming 6dB 

attenuation, i.e., the threshold is equal to 0.5 and the 

hangover time is set to 240 samples [12]. In Figs. 11 

and 12, the VSS-APA and VSS-DCD-AP algorithms 

are used in conjunction with a Geigel DTD. It can be 

noticed from Figs. 11 and 12 that the robustness to 

double talk situation is greatly improved and the 

conclusions regarding the convergence performance 

are the same as in the other experiments in both exact 

modeling and under-modeling cases. 

 

IV. CONCLUSION 

 

A VSS-DCD-AP suitable for AEC applications has 

been derived in this paper. A variable step size was 

used in order to take into account the existence and the 

non-stationarity of the near-end signal as well as the 

under-modeling noise. Computation of the variable 

step-size requires no additional parameters from the 

acoustic environment. The simulation results 

performed in an AEC context showed its suitability in  

practice due to robustness to near-end signal variat ions 

like the increase of the background noise or double-

talk. Concerning the last scenario, the VSS-DCD-AP 

can be combined with a simple Geigel DTD in order 

to enhance its performance. The proposed algorithm is 

much less computationally complex than the VSS-

APA. 

 

Acknowledgment: This work was supported by the 

UEFISCSU under Grant PN-II no. 331 / 01.10.2007 

The authors want to thank reviewers for their 

comments that helped improve this paper.  

 

REFERENCES 

 

 
[1] K. Ozeki and T. Umeda, “An adaptive filtering 

algorithm using an orthogonal projection to an affine 
subspace and its properties,” Electronics and 
Communications in Japan, vol. 67-A, no. 5, 1984.  

[2] S.L. Gay “A fast converging, low complexity adaptive 
filtering algorithm”, Third International Workshop on 
Acoustic Echo Control, Plestin les Greves, France, 
1993, pp. 223-226. 

[3] Q.G. Liu, B. Champagne, and K. C. Ho, “On the use of 
a modified FAP algorithm in subbands for acoustic 
echo cancellation," in Proc. 7th IEEE DSP Workshop, 
Loen, Norway, 1996, pp. 2570-2573 

[4] H. Ding, “A stable fast affine projection adaptation 
algorithm suitable for low-cost processors”, ICASSP 
2000, Turkey, pp. 360-363 

[5] F. Albu, J. Kadlec, N. Coleman, and A. Fagan, “The 
Gauss-Seidel fast affine projection algorithm,” in Proc. 
IEEE SIPS 2002, pp. 109 - 114, San Diego, U.S.A, 
October 2002. 

[6] Y. Zakharov, F. Albu, Coordinate descent iterations in 
fast affine projection algorithm, IEEE Signal 
Processing Letters, Vol. No. 5, May 2005, pp. 353-356. 

[7] Y. Zakharov, “Low complexity implementation of the 
affine projection algorithm”, IEEE Signal Processing 
Letters, vol. 15, pp. 557-560 

[8] Y. Zakharov, and T. Tozer, “Multiplication-free 
iterative algorithm for LS problem”, Electron. Lett.,  
2004, 40, (9), pp. 567-569 

[9] Y. Zakharov, G. White, and J. Liu, “Low complexity 
RLS algorithms using dichotomous coordinate descent 
iterations,” IEEE Trans. Signal Processing, vol.56. 
No.7, pp.3150—3161, July 2008 

[10] C. Paleologu, J. Benesty, and S. Ciochina, “Robust 
variable step-size affine projection algorithm suitable 
for acoustic echo cancellation”, Proc. Eusipco 2008, 
Laussane, Switzerland  

[11] J. Benesty, H. Rey, L. Rey Vega, and S. Tressens, “A 
nonparametric VSS NLMS algorithm,” IEEE Signal 
Process. Lett., vol. 13, no. 10, pp. 581–584, Oct. 2006. 

[12] J. Benesty, T. Gaensler, D. R. Morgan, M. M. Sondhi, 
and S. L. Gay, Advances in Network and Acoustic 
Echo Cancellation.  Berlin, Germany: Springer-
Verlag, 2001.  

How to cite this paper if used in research 

publications:  

F. Albu, C. Paleologu, J. Benesty, and Y. V. 

Zakharov, “Variable Step Size Dichotomous 

Coordinate Descent Affine Pro jection Algorithm”, 

EUROCON 2009, Saint Petersburg, Russia, May 
2009, pp. 1366-1371 

Websites with some documentation on related area: 

http://falbu.50webs.com and 

http://falbu.50webs.com/dcd.htm 

 

 

http://falbu.50webs.com/
http://falbu.50webs.com/dcd.htm

