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Summary 
Recently, a reduced complexity integrated noise reduction and active noise control approach has 
been proposed for improving speech intelligibility of digital hearing aids. The complexity reduction 
over the filtered-x multichannel Wiener filter MWF (FxMWF) has been obtained using the 
dichotomous coordinate descent approach, but a slight performance reduction has been reported as 
well. In this paper, a new method based on an approximation of the autocorrelation matrix is 
proposed. It is shown that the proposed method has a much-reduced numerical complexity, better 
performance/cost and memory requirements than the competing MWF based algorithms. The 
performance for various parameters is confirmed by different measurement metrics for a wide range 
of SNR values of the noisy speech.  
PACS no. 43.50.Ki, 43.66.Ts 

 
1. Introduction1 

Hearing aids (HA) are increasingly used by people 
of all ages. The typical behind the ear (BTE) 
hearing aid has a microphone, a signal processing 
unit and a loudspeaker [1]-[2]. The signal that 
reaches the microphone is amplified, but, 
unfortunately, the noise is amplified too. Several 
noise reduction (NR) schemes [3] have been 
proposed in order to improve the speech 
intelligibility in the presence of noise. An active 
noise control (ANC) algorithm can solve some 
problems associated with the open fitting hearing 
aid [4]. Numerous ANC algorithms have been 
proposed (e.g. [5]-[6]). One approach integrates the 
NR and active noise control (ANC) into the HA in 
order to alleviate the signal deterioration due to 
leakage through the vent issue and the secondary 
path effect [7], [8]. Recently, a version that does not 
degrade the speech intelligibility and uses the 
dichotomous coordinate descent (DCD) [9] has 
been proposed [4]. The DCD algorithm and the 
Gauss-Seidel algorithm have been found to reduce 
the numerical complexity of various algorithms 
[10]-[13]. It was shown that the numerical 
complexity in terms of multiplications involving the 
autocorrelation matrix inverse was reduced from an 
( )3O N  to ( )O N , where N is the weight vector 

length. Unfortunately, the number of additions 

                                                      

 

increases a lot, depending on the parameters of the 
DCD method.  
In this paper an even computationally simpler 
approach for the NR and ANC integrated scheme 
for the two-microphone ([4], [14]-[15]) behind the 
ear (BTE) hearing aid is proposed starting from an 
approximation of the autocorrelation matrix. It is 
shown that the results are very close to that of 
multichannel Wiener filter (MWF) approach 
without speech intelligibility degradation.   
In Section 2 the proposed method is described, 
while simulation results are presented in Section 3. 
Finally, acknowledgement, conclusions and future 
work close the article.  
 
2. Proposed method  

The two-microphone BTE hearing aid from [4] that 
needs a near perfect voice activity detector (VAD) 
is considered. The input signals are the sum of the 
speech signal and the noise component: 
                ( ) ( ) ( ) ,  1,2s n

i i ix n x n x n i= + =    (1) 
The signals from the two microphones in vector 
form are the following 
               ( ) ( ) ( ),..., 1

T
i i i in x n x n N=  − +  x  (2) 

where iN  is the length of the ith microphone input 
vector. The output signal is 
                       ( ) ( ) ( )Ty n n n= w x  (3) 
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where the above-mentioned vectors are  

( ) ( ) ( )1 2 
TT Tn n n =  x x x , ( ) ( ) ( )1 2 T T Tn n n =  w w w  

               ( ) ( ) ( ),0 , 1,...,
i

T

i i i Nn w n w n− =  w  (4) 
The block diagram of the proposed method is shown 
in Figure 1. The recursive estimator from the 
diagram estimated only the cross-correlation 
vectors, and do not additionally estimates the 
autocorrelation matrix as in [4].   

 
Figure 1. Block diagram.  

 

Using an MWF approach, the optimal steady state 
weight vector for the adaptive filter can be obtained 
as follows [4] 
                         ( ) ( ) ( )1

1,xx xd sn n n−=w R r     (5) 

where ( )1
xx n−R  is the autocorrelation matrix of x(n) 

and ( ) ( ) ( )1, 1,xd s sn E n d n =  r x  is the cross-

correlation vector between x(n) and ( )1,sd n  is the 
delayed version of speech component of the first 
microphone.  
In an open fitting scenario, there is a noise leaking 
that reaches the eardrum. The amplified version (a 
forward path gain, F) is also passed through the 
secondary path, having a transfer function denoted 
by S(z) and an impulse response given by s(n) [4]. 
A compensation for the secondary path effects has 
been obtained through using an ANC system. The 
leakage signal, l(n) is the sum of speech and noise 
components respectively. In this work, it has been 
assumed that an error microphone is near the 
eardrum and that the components of x(n) are 
uncorrelated. We define [4]  

( ) ( ) ( ) ( ) ( )
1 2

 
Ts n T T

f f f f fn n n n n = + =  x x x x x  (6) 

where ( )
if

nx is the filtered ( )i nx  input signal 

vector through the secondary path, ( )s
f nx  is the 

signal component of ( )f nx  and ( )n
f nx  is its noise 

component. The steady state adaptive filter weight 
vector can be obtained as follows [4] 
                         ( ) ( ) ( )1

f f f ANCx x x dn n n−=w R r  (7) 

where ( )
f fx x nR   is the autocorrelation matrix of 

( )f nx  and ( )
f ANCx d nr  is the cross-correlation vector 

between ( )f nx  and ( )ANCd n  is the desired signal 
at the eardrum. The following relation is obtained 
[4] 

      ( ) ( ) ( ) ( )
1, 1,

n n n nf f f f
x ANC x x x x x l

d n n F n n
∆ ∆

= − ⋅ −r r r r      (8) 

The estimated vectors and matrices of the filtered-x 
MWF (FxMWF) algorithm are [4]: 

      ( ) ( ) ( ) ( ) ( )
1, 1,

1ˆ ˆ 1n n n n
f f

n n
fx x x x

n n n x nλ λ
∆ ∆

= + − − ∆r r x     (9) 

     ( ) ( ) ( ) ( ) ( )
1, 1,

1ˆ ˆ 1
f f

fx x x x
n n n x nλ λ

∆ ∆
= + − − ∆r r x    (10) 

           ( ) ( ) ( ) ( ) ( )1n n n n
f f

n n
fx l x l

n n x n l nλ λ= + −r r        (11) 

         ( ) ( ) ( ) ( ) ( )ˆ ˆ 1
f f f f

T
f fx x x x

n n n nλ λ= + −R R x x    (12) 

where λ  is a forgetting factor, usually very close to 
one.  
The approximation used in the proposed method is 
that the elements outside the main diagonal are 
close to zero, i.e. only the diagonal elements 

( )
f fx x

nr  are computed as follows: 

                  ( ) ( ) ( ) ( )21
f f f f

fx x x x
n n nλ λ= + −r r x       (13) 

Therefore, each ith element of the weight vector 
( )nw , i.e. ( )iw n , can be obtained as                           

( ) ( ) ( )1,        /    1
f f

i i i
xd s x x

w n r n r n i N= ≤ ≤          (14) 

where ( )1,
i
xd sr n  and ( )

f f

i
x x

r n  are the ith element of 

( )1,xd s nr  and ( )
f fx x

nr  respectively. The resulting 

algorithm, called filtered-x simplified MWF 
(FxSMWF) algorithm, has a much lower 
computational complexity than FxMWF algorithm. 
When VAD = 0 the number of additions and 
multiplications per sample of each algorithm is:  
                 3 2/ 6 4 19 / 3FxMWFM N N N= + +       (15) 
             3 2/ 6 3 23 / 3 5FxMWFA N N N= + + −       (16) 
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                 23 / 2 15 / 2DCD FxMWFM N N− = +         (17) 
             

( )22 15 / 2 2*
                     5

DCD FxMWF u b

u

A N N N M
N

− = + + +

+ −
     (18) 

                            23 / 2FxSMWFM N=                  (19) 
                            21 / 2 5FxMWFA N= −               (20) 

When VAD = 1 the number of additions and 
multiplications per sample of each algorithm is:  
                 3 2/ 6 25 / 3FxMWFM N N N= + +        (21) 
             3 2/ 6 25 / 3 5FxMWFA N N N= + + −        (22) 
                            21 / 2DCD FxMWFM N− =             (23) 

( )15 / 2 2* 5DCD FxMWF u b uA N N M N− = + + + −   (24) 
                            29 / 2FxSMWFM N=                  (25) 
                            23 / 2 5FxMWFA N= −               (26) 

A comparison of the computational complexity in 
terms of multiplications of FxMWF algorithm, the 
Dichotomous Coordinate Descent FxMWF (DCD-
FxMWF) algorithm, and FxSMWF algorithm is 
shown in Fig. 2.   

 
Figure 2. The number of multiplications of the 
investigated algorithms.  

 
It can be seen that the FxMWF is the most complex 
algorithm. The proposed algorithm has much fewer 
multiplication than DCD-FxMWF for VAD = 0 and 
almost the same number of multiplications for VAD 
= 1. Therefore, for a typical speech signal, where 
the noise can be detected up to 50% of the time, the 
proposed algorithm has the least number of 
multiplications among the investigated algorithms. 
The computational complexity comparison in terms 
of additions is shown in Figure 3. For the DCD-
FxMWF algorithms are 32uN = , and 24bM = . It 
can be easily noticed that the FxSMWF algorithm is 
the least complex.  

 
Figure 3. The number of additions of the investigated 
algorithms, 32uN = , 24bM = .  

 
Figure 4. The number of additions and multiplications of 
the investigated algorithms for 50% speech detection by 
VAD.  
 
Also, for the chosen parameters, there is a minimum 
number of weights needed for the DCD-FxMWF 
algorithm to become less complex than FxMWF 
algorithm. For the specific DCD parameters 
considered in these simulations, the overall 
complexity of DCD-FxMWF starts being smaller 
than that of FxMWF when N > 20. It is obvious 
from figures 2 and 3 that, for typical speech signals, 
the numerical complexity of the proposed algorithm 
is by far the smallest among the competing 
algorithms. This fact is exemplified in Figure 4 for 
a 50% VAD speech detection case. The memory 
requirements are smaller for the proposed algorithm 
because there is no need to store autocorrelation 
matrix elements. 
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3. Simulation results2 

The investigated algorithms were tested on speech 
signals mixed with babble noise, the noisy speech 
having an SNR of 10 dB. The noisy speech segments 
were collected from NOIZEUS database [16]. All the 
signals were sampled at 8 kHz and the leakage signal 
SNR is set at 0 dB as in [4]. 
The performance measurement metrics used in this 
study are the normalized-covariance measure (NCM) 
[17] and coherence speech intelligibility index 
(CSII) [18]. The parameters were N =64, 24bM = , 

32uN = , and H =4. 
In Figure 5, the amplitude difference between the 
weights of FxMWF and the FxSMW and DCD-
FxMWF respectively is plotted. The amplifier gain 
was 5 dB. It can be easily noticed that the amplitude 
difference between FxMWF and FxSMWF is two 
orders of amplitude smaller than the amplitude 
difference between FxMWF and DCD-FxMWF. 
Therefore, the weights of FxSMWF are much closer 
to those of FxMWF than DCD-FxMWF.  
In Figure 6, the amplitude difference between the 
weights of FxMWF and the FxSMW and DCD-
FxMWF respectively is plotted, but the amplifier 
gain was changed from 5 dB to 15 dB. 
It is confirmed for the 15 dB gain case, that the 
weights of FxSMWF are much closer to those of 
FxMWF than DCD-FxMWF. Also, the amplitude 
differences are higher in case of 15 dB gain than 
those for a 5 dB gain.  
Tables I and II shows the NCM and CSII measures, 
respectively. 

 
Figure 5. The amplitude difference between the weights 
for a SNR = 5 dB a) FxMWF and FxSMWF; b) FxMWF 
and DCD-FxMWF.  
 
 
                                                      

 

 
Figure 6. The amplitude difference between the weights 
for a SNR = 15 dB a) FxMWF and FxSMWF; b) FxMWF 
and DCD-FxMWF.  
 
Two gains values were considered: 0dB and 25 dB. 
For both investigated measures, higher values mean 
more intelligible speech signal. It can be noticed 
from both tables that the improved speech 
intelligibility of FxMWF and FxSMWF is the same. 
The DCD-FxMWF measures are slightly lower than 
those of FxMWF and FxSMWF for a 25 dB forward 
path gain. It should be noted the the performance of 
the MWF based versions depends on the accuracy of 
the VAD scheme. Future work will be focused on 
exploiting the sparsity of feedback path by using 
techniques from [19]-[21]. 
 
Table I. NCM measures for the investigated algorithms.  

Gain FxMWF DCD-FxMWF FxSMWF 
0 0.625 0.625 0.626 

25 0.619 0.612 0.619 
 
Table II. CSII measures for the investigated algorithms.  

Gain FxMWF DCD-FxMWF FxSMWF 
0 0.654 0.654 0.654 

25 0.654 0.653 0.654 
 
 
4. Conclusions 

A simplified integrated NR-ANC scheme for a two 
microphone BTE hearing aid is proposed in this 
paper. The computational complexity advantage 
over the previous MWF approaches is 
demonstrated, while the simulations proved the 
improved speech intelligibility.  
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