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ABSTRACT 
Proportionate-type affine projection algorithms were devel-
oped in the context of echo cancellation, as a generalization 
of the proportionate-type normalized least-mean-square 
algorithms. A matrix inversion is required within the affine 
projection algorithm (APA). In the case of proportionate-
type APAs, the update of the matrix to be inverted is very 
computationally expensive. In this paper, an efficient update 
of this matrix is proposed and the procedure is applied for a 
recently developed proportionate-type APA. It is shown that 
the proposed algorithm achieves similar performance but 
significantly lowers numerical complexity as compared to 
known proportionate-type APAs. 

1. INTRODUCTION 

Many interesting adaptive algorithms have been proposed 
for echo cancellation [1], [2]. The main goal is to identify an 
unknown system, i.e., the echo path, providing at the output 
of the adaptive filter a replica of the echo. Nevertheless, the 
echo paths (for both network and acoustic echo cancellation 
scenarios) have a specific property, which can be used in 
order to help the adaptation process. These systems are 
sparse in nature, i.e., a small percentage of the impulse re-
sponse components have a significant magnitude while the 
rest are zero or small. The sparseness character of the echo 
paths inspired the idea to “proportionate” the algorithm be-
havior, i.e., to update each coefficient of the filter independ-
ently of the others, by adjusting the adaptation step-size in 
proportion to the magnitude of the estimated filter coeffi-
cient. In this manner, the adaptation gain is “proportion-
ately” redistributed among all the coefficients, emphasizing 
the large ones in order to speed up their convergence, and 
consequently to increase the overall convergence rate. The 
proportionate normalized least-mean-square (PNLMS) algo-
rithm [3] proposed by Duttweiler almost a decade ago, was 
one of the first proportionate-type algorithms. An insightful 
overview of the proportionate-type algorithms can be found 
in [2] (chapter 5); also, some recently proposed proportion-
ate-type NLMS algorithms can be found in [4] and [5]. 

In the context of echo cancellation, the affine projection 
algorithm (APA) [6] and its fast versions, i.e., the fast affine 
projection (FAP) algorithms (e.g., [7]–[11]), were found to be 

very attractive choices. Also, several proportionate-type 
APAs were developed [12]–[14], as a straightforward exten-
sion of the proportionate-type NLMS algorithms. It is known 
that a matrix inversion is required within the APA. Most of 
the FAP algorithms implement this operation in a computa-
tionally efficient manner, by taking into account the proper-
ties of the matrix to be inverted, i.e., time-shift character and 
symmetrical structure. Unfortunately, this is not valid in the 
case of proportionate-type APAs. The only proportionate-
type APA with a matrix to be inverted having a time-shift 
character (but not symmetric) was recently proposed in [15]. 
This algorithm was called the “memory”-improved propor-
tionate APA (MIPAPA) and it was derived as a version of the 
improved proportionate APA (IPAPA) [14] [which is a gener-
alization of the improved proportionate NLMS (IPNLMS) 
algorithm [16]]. 

The contribution of this paper is that an approximation is 
proposed for the MIPAPA in order to update in a computa-
tionally efficient manner the matrix to be inverted. The paper 
is organized as follows. Section 2 represents an overview of 
the proportionate-type algorithms for echo cancellation; also, 
an efficient implementation of the MIPAPA is presented. In 
Section 3, an approximated MIPAPA (AMIPAPA) is derived. 
The numerical complexity of these algorithms is investigated 
in Section 4. The simulation results presented in Section 5 
compare the proposed algorithm with IPAPA and MIPAPA in 
the context of echo cancellation. Finally, the conclusions are 
given in Section 6.                    

2. OVERVIEW OF THE PROPORTIONATE-TYPE 
ALGORITHMS FOR ECHO CANCELLATION  

In the context of echo cancellation, an adaptive filter is used 
to model an unknown system, i.e., the echo path. Both sys-
tems are driven by the same input, i.e., the far-end signal 
x(n), where n is the time index. The reference signal of the 
adaptive filter, d(n), contains the output of the echo path 
(i.e., the echo signal) and the near-end signal. Let us assume 
an adaptive finite-impulse-response filter defined by the real-
valued coefficients vector ĥ(n) = [ĥ0(n), ĥ1(n),…, ĥL–1(n)]T, 
where L is the length of the adaptive filter and superscript T 
denotes transposition. The error signal is defined as 

( ) ( ) ( ) ( )ˆ 1Te n d n n n= − −h x , (1) 



where x(n) = [x(n), x(n–1),…, x(n–L+1)]T is a real-valued 
vector containing the L most recent samples of the input 
signal. A proportionate-type NLMS algorithm [3] updates its 
coefficients according to  

( ) ( ) ( ) ( ) ( )
( ) ( ) ( )

1ˆ ˆ 1
1T

n n e n
n n

n n n

µ

δ

−
= − +

+ −

G x
h h

x G x
, 

(2) 

where µ is the normalized step-size parameter, δ is the regu-
larization constant, and G(n – 1) is an L x L diagonal matrix 
which assigns an individual step-size to each filter coeffi-
cient. This type of algorithms converges faster than NLMS 
especially for sparse impulse responses. The diagonal ele-
ments of G(n – 1), which allocate a certain gain for each 
filter coefficient, should be evaluated based on the adaptive 
filter coefficients only. In the case of the IPNLMS algorithm 
[16], the diagonal elements of G(n – 1), denoted in the fol-
lowing by gl(n – 1), with 0 ≤ l ≤ L – 1, are evaluated as 
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where –1 ≤ α < 1 and the small positive constant ξ avoids 
division by zero (especially at the beginning of the adapta-
tion when all the filter taps are initialized to zero); in prac-
tice, good choices for the parameter α are 0 or –0.5.  

Due to its convergence performance (especially for cor-
related inputs), the APA is also frequently used for echo can-
cellation. The equations of the classical APA [6] are  

( ) ( ) ( ) ( )ˆ 1Tn n n n= − −e d X h , (4) 
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where  is the 
reference signal vector of length p, with p denoting the pro-
jection order, 
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the input signal matrix, and Ip is the p x p identity matrix. 
Most of the proportionate-type APAs (e.g., [12]–[14]) were 
straightforwardly obtained from the proportionate-type 
NLMS algorithms, by a simple extension of the proportion-
ate idea. Their coefficients are updated by 
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When the elements of G(n – 1) are evaluated as in (3), the 
IPAPA is obtained [14]. Let us denote 
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where g(n – 1) is a vector containing the diagonal elements 
of G(n – 1); the operator  denotes the Hadamard product, 

i.e., , where 
a and b are two vectors of length L. The other equations of 
IPAPA are 

:

( ) ( ) ( ) ( ) ( ) ( )1 1 , 2 2 , , Ta b a b a L b L= ⎡⎣a b: …

( ) ( ) ( )T
pn nδ= +S I X P , (8) 

( ) ( ) ( ) ( )Solve n n n n= ⇒S ε e ε , (9) 

( ) ( ) ( ) (ˆ ˆ 1n n nµ= − +h h P ε )n , (10) 

where the solving of the linear system of (9) is performed in 
the classical manner using LDLT method [17]. 

Following a general framework for the derivation of pro-
portionate-type APAs, it was shown in [15] that a more 
proper approach instead of (7) is  

( ) ( ) ( ) ( ) ( )' 1 ...n n n n p n p= − − − +1 ,⎡ ⎤⎣ ⎦P g x g x: :  (11) 

where g(n – k) are the vectors containing the diagonal ele-
ments of the matrixes G(n – k), with k = 1, 2, …, p. The 
advantage of this modification is twofold. First, this algo-
rithm takes into account the “history” of the proportionate 
factors from the last p steps. Second, the computational 
complexity is lower as compared to (7), because (11) can be 
written as 

( ) ( ) ( ) (1' 1 'n n n n− )1⎡ ⎤= − −⎣ ⎦P g x P: , (12) 
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contains the first p – 1 columns of . Thus, the ma-

trix 
(' 1n −P )

( )' nP
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 has the time-shift character, requiring only L 
multiplications to be evaluated. However, the matrix to be 
inverted [i.e., ] is not symmetric. When 
the elements of the vectors g(n – k), with k = 1, 2, …, p, are 
evaluated as in (3), the MIPAPA is obtained [15]. For the 
MIPAPA, the matrix  has the time-shift prop-
erty. The time-shift property can be exploited in order to 
reduce the complexity of updating the matrix 

. Only the first row and column 

of 
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top-left 
( )' nS

( ) ( )1p p 1− × −  submatrix of . Important 
computational savings are obtained because only a part of 
the matrix 

(' 1n −S )

( )' nS  is re-computed. The first column is given 

by ( ) ( ) ( )1T n n n⋅ −⎡ ⎤⎣ ⎦X g x: , while the first row is com-

puted as . The other equations of MIPAPA are  ( ) ( )'T n nx P

( ) ( ) ( ) (ˆSolve ' n n n n= ⇒S ε e ε ) , (14) 

( ) ( ) ( ) (ˆ ˆ ˆ1 'n n nµ= − +h h P ε )n . (15) 

3. LOW COMPLEXITY PROPORTIONATE-TYPE 
APA   

In the IPAPA, the step required in (8) is computationally 
expensive, because the matrix  does not have 

the time-shift property. For the MIPAPA, the matrix 
( ) ( )T n nX P

( )' nS  
has the time-shift property, but it is not symmetric. Impor-
tant computational savings, especially for large filter lengths 
and projection orders, can be achieved if an approximation 
is made in order to obtain a symmetric matrix. This new 



matrix, , is obtained by updating both its first row and 
its first column with 

 and adding 

( )'' nS

( ) ( ) ( ) ( ) ( ):,11 'T Tn n n n⋅ − =⎡ ⎤⎣ ⎦X g x X P: n δ  

to the first element [where ( ):,1' nP  denotes the first column 

of ]. A similar updating procedure was extensively 
used in FAP algorithms, e.g., [7]–[11], for updating the cor-
relation matrix. Like for the MIPAPA, the bottom-right 

 submatrix of  is replaced with the 

top-left  submatrix of . The re-
sulted algorithm, called the approximated MIPAPA 
(AMIPAPA), will require the following system of equations 
to be solved:   
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The other equations of AMIPAPA are identical with those of 
MIPAPA.  

Fig. 1 shows the error norm between the vectors con-
taining the first row using the updating procedure of 
AMIPAPA [i.e. ] and MIPAPA [i.e. 

], respectively.  

( ) ( ):,1'T nX P

( ) ( )'T n nP x

Fig. 1.  The error norm between first row updating methods of 
MIPAPA and AMIPAPA algorithms. 
 

It can be seen from Fig. 1 that error norm is very small. 
It will be shown in Section 5 that this fact leads to almost 
identical performance of AMIPAPA and MIPAPA algorithms 
in the investigated cases. 

4. NUMERICAL COMPLEXITY COMPARISON  

The numerical complexity of the investigated algorithms in 
terms of multiplications is the following:  

( )IPAPA
2 3 1 mC L p p p P= + + + + , (17) 

( )MIPAPA 4 1 mC L p p P= + + + , (18) 

( )AMIPAPA 3 2 mC L p p P= + + + . (19) 

The notation Pm = O(p3) indicates the numerical complexity 
in terms of multiplications associated with solving the linear 
systems of equations using the LDLT method ([9], [17]). 

Fig. 2 shows the numerical complexity comparison in 
two situations: a) as a function of L and fixed p = 8 and b) as 
a function of p and fixed 512L = . The number of multipli-
cations varies linearly with the filter length for all the con-
sidered algorithms. Also, the variation of the term that mul-
tiplies the filter length, L, is proportional to p2 for the 
IPAPA, while it is proportional to p for MIPAPA and 
AMIPAPA. It can be seen from Fig. 2 that AMIPAPA is the 
least complex in terms of multiplications, especially for 
large filter lengths or projection orders. The MIPAPA fol-
lows after AMIPAPA, with the IPAPA being the most com-
plex algorithm.  

Fig. 2.  Numerical complexity of the considered algorithms in terms 
of multiplications for 8p =  in two situations: a) variable ; b) 
variable p. 

L

 
The numerical savings are important. For example, with 

512,   8L p= = , the IPAPA needs 45716 multiplications, 
while the MIPAPA is about 60% less complex (i.e., it re-
quires 17044 multiplications). The least complex algorithm is 
the AMIPAPA, which needs 13460 multiplications; therefore, 
it is about 67% less complex than the IPAPA and about 21% 
less complex than MIPAPA in terms of multiplications.  

5. SIMULATION RESULTS  

Simulations were performed in the context of echo cancella-
tion. The network echo path from Fig. 3a [18] is used in 
most of the experiments; for the last experiment, the acous-
tic echo path from Fig. 3b is used. The length of the adaptive 
filter is L = 512. The input signal is a speech signal. The 
output of the echo path is corrupted by an independent white 
Gaussian noise with different values of the signal-to-noise 
ratio (SNR). The measure of performance is the normalized 
misalignment (in dB); it is defined as 20log10(||h – 
ĥ(n)||2/||h||2), where  is the true impulse response of the 
echo path and ||·||

h
2 denotes the l2 norm. In the under-

modelling scenario (Fig. 7), the expression of the normal-
ized misalignment is evaluated by padding the vector of the 
adaptive filter coefficients (256 coefficients) with 256 zeros. 
Also, the abrupt change of the echo path is introduced at 
time 0.5 by shifting the impulse response to the right by 12 
samples. 



 
Fig. 3. Echo paths used in simulations. a) Sparse network echo path 
impulse response (used in Figs. 5 and 6); b) Acoustic echo path 
(used in the experiment from Figs. 7 and 8). 

 
All the algorithms use the same values for their parame-

ters, i.e., the step-size is µ = 0.2, the regularization constant 
is δ = 50σx

2/2L (where σx
2 is the input signal variance), and α 

= 0. A speech sequence was used as input, and p = 8. It was 
shown in [15] that both IPAPA and MIPAPA outperform the 
classical APA in the context of network echo cancellation; 
therefore, the APA is not included for comparison. Also, 
since the numerous FAP algorithms are approximations of 
the classical APA, their performance was not investigated as 
well. 

In Fig. 4, SNR = 30 dB and echo path changes. Fig. 4 
shows the better performance of both AMIPAPA and 
MIPAPA, as compared to the IPAPA. The same conclusions 
can be obtained in the case of variable background noise (at 
the near-end). In Fig. 5, the SNR decreases from 30 dB to 10 
dB between times 0.25 and 0.5.  

 
Fig. 4.  Misalignment of the IPAPA, MIPAPA, and AMIPAPA. The 
input signal is a speech sequence, p = 8, L = 512, SNR = 30 dB, and 
echo path (from Fig. 3a) changes at time 0.5. 

 
Fig. 5.  Misalignment of the IPAPA, MIPAPA, and AMIPAPA. The 
input signal is a speech sequence, p = 8, L = 512, echo path (from 
Fig. 3a), and variable background noise (SNR decreases from 30 dB 
to 10 dB between times 0.25 and 0.5, otherwise is 30 dB). 

 
Next, the performance of the algorithms is evaluated us-

ing the acoustic echo path from Fig. 3b and SNR = 30 dB. It 
can be seen from Fig. 6 that both AMIPAPA and MIPAPA 
achieve faster tracking and lower misalignment than the 
IPAPA. However, the misalignment difference between the 
IPAPA and MIPAPA/AMIPAPA is higher than that obtained 
in Fig. 4, using the echo path from Fig. 3a.  

Fig. 7 considers the under-modelling case (L = 256 coef-
ficients are considered to model the echo path from Fig. 3b) 
and the acoustic path changes at time 0.5. It can be seen from 
Fig. 7 that the algorithms are robust, and similar conclusions 
as above can be drawn (regarding the convergence and track-
ing abilities). As expected, the misalignment performance is 
worse than that of the exact modelling case. 

Fig. 8 confirms that the performance of MIPAPA and 
AMIPAPA is virtually the same in case of simulations from 
Figs. 4-7. Because of the good approximation proved in Fig. 
1, the misalignment difference between AMIPAPA and 
MIPAPA is limited in absolute value to 0.15 dB.  

 
Fig. 6.  Misalignment of the IPAPA, MIPAPA, and AMIPAPA. The 
input signal is a speech sequence, p = 8, L = 512, SNR = 30 dB, 
echo path (from Fig 3b) changes at time 0.5. 



 
Fig. 7.  Misalignment of the IPAPA, MIPAPA, and AMIPAPA. The 
input signal is a speech sequence, p = 8, L = 512, SNR = 30 dB, 
echo path (from Fig 3b) changes at time 0.5, under-modelling sce-
nario. 

 
Fig. 8.  Misalignment difference in dB between MIPAPA, and 
AMIPAPA for Figs. 4-7. 

 

6. CONCLUSIONS 

In this paper, a low complexity proportionate-type APA was 
proposed. An approximation was performed within the 
MIPAPA in order to update in a computationally efficient 
manner the matrix to be inverted. The proposed AMIPAPA 
offers good performance versus complexity ratios as com-
pared to the original IPAPA and MIPAPA. Therefore, longer 
filter lengths and higher projection orders can be used by 
AMIPAPA for a similar complexity as compared to the other 
algorithms, but with improved convergence performance. 
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