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ABSTRACT 

 

In this paper, we propose a new multichannel filtered-x affine 

projection algorithm based on dichotomous coordinate descent 

(DCD) iterations for active noise control (ANC) systems. It 

includes a fast recursive filtering procedure with the filter update 

incorporated in the DCD iterations. It is shown that the 

proposed algorithm has a lower complexity, and superior 

convergence properties than the multichannel filtered-x LMS 

algorithm. Also, it compares favorably to a previously 

published DCD based algorithm for ANC systems. 

Index Terms— adaptive filters, adaptive signal 

processing, acoustic applications, least mean square methods 

 

1. INTRODUCTION 

 

Active noise control (ANC) systems have been increasingly 

researched and developed [1]. In such systems, an adaptive 

controller is used to optimally cancel unwanted acoustic noise. 

The use of the modified filtered-x structure for ANC using FIR 

adaptive filtering [2] will be assumed in the rest of this paper 

(see Fig. 1).  
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ĥ

 

 

+ 

+ 

Reference 
signals   x 

Plant 

model   ĥ  
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Fig. 1. A delay compensated (or modified filtered-x) structure for 

active noise control. 

 

The multichannel versions of the filtered-x LMS (FX-LMS) 

or the modified filtered-x LMS (MFX-LMS) algorithms are 

the benchmarks to which most adaptive filtering algorithms are 

compared, because they are widely used [1]-[2]. In the field of 

adaptive filtering for ANC it is well known that fast affine 

projection (FAP) algorithms (firstly proposed by Gay and 

Tavathia [3]) can produce a good tradeoff between convergence 

speed and computational complexity in ANC systems [4]-[5]. 

The numerical complexity of affine projection (AP) algorithms 

for ANC can be further reduced by using the Dichotomous 

Coordinate Descent (DCD) method proposed in [6]. In [7] it 

was shown that the Modified Filtered-x Dichotomous 

Coordinate Descent Affine Projection (MFX-DCDAP) 

algorithm has similar performance with the more complex 

Modified Filtered-x Affine Projection (MFX-AP) algorithm. 

An even simpler version based on approximation of the affine 

projection, called the Modified Filtered-x Dichotomous 

Coordinate Descent Pseudo Affine Projection (MFX-

DCDPAP) algorithm, has been investigated in [8]. In [9] a 

novel recursive filtering technique and filtering update that is 

incorporated in DCD iterations that leads to an important 

reduction in the number of multiplications is proposed for the 

AP algorithm.  

In section 2, a new algorithm for multichannel active noise 

control systems called the Modified Filtered-x Dichotomous 

Coordinate Descent Recursive Affine Projection (MFX-

DCDRAP) algorithm is proposed. It uses a variant of the DCD 

algorithm called the DCD algorithm with a leading element 

[10]. The computational complexity of the proposed algorithm 

is evaluated and compared with other algorithms in Section 3. 

Simulation results comparing the new proposed algorithm with 

previously published algorithms are presented in Section 4. 

Section 5 concludes this work. 

 

2. MFX-DCDRAP ALGORITHM 

 

In order to describe the algorithm most of the notations and 

definitions from [7] are used. The variable n refers to the 



discrete time, I is the number of reference sensors, J represents 

the number of actuators, K is the number of error sensors, L is 

the length of the adaptive FIR filters, M is the length of FIR 

filters modeling the plant, N is the projection order.  

The vectors     Tiii Lnxnx 1,..., x  and 

    Tiii Mnxnx 1,...,' x consist of the last L and M 

samples of the reference signal  nxi , respectively.  The vector 

    Tjjj Mnyny 1,..., y  consists of the last M samples 

of the actuator signal  ny j . The samples of the filtered 

reference signal  nkji ,,  are collected in a KIJ  matrix 
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001  Lnnn TT

VVV , and KNIJL   matrix 

 )1()()( 11  Nnnn VVV  .   

Vectors         ndndndn K
ˆ,...,ˆ,ˆˆ

21d  and 

        nenenen K
ˆ,...,ˆ,ˆˆ

21e  consist of estimates  nd k
ˆ  of 

the primary sound field  nd k  and alternative error signals 

samples  nek
ˆ , both computed in delay-compensated modified 

filtered-x structures.   

Vectors         1ˆ,...,1ˆ,ˆˆ  Nnnnn dddD  and 

        1ˆ,...,1ˆ,ˆˆ  Nnnnn eeeE  have both KN1  size 

[6]. The vectors  TMkjkjkj hh ,,1,,, ,...,h consist of taps 

mkjh ,,  of the fixed FIR filter modelling the plant between 

signals  ny j  and  nek . A 1IJL  vector 

            nwnwnwnwn LJILJI ,,,1,11,,1,1,1 ... ... ...w  consists 

of taps of all the adaptive FIR filters linking the signals  nxi  

and  ny j . )(nR is a KNKN  auto-correlation matrix , 

 nP  and  nZ  are  1KN sized initially null vectors,  I is a 

KNKN   identity matrix ,   is a regularisation factor and  

  is a normalized convergence gain.  nY  is a 1KN sized 

initial null vector and  nY is a vector that keeps the upper 

 1 1K N    elements of  nY . 

In the context of ANC systems, a multichannel feedforward 

system using an adaptive FIR filter with a modified filtered-x 

structure and with filter weights adapted with a classical AP 

algorithm can be described by the following equations [5]: 
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Using the original DCD-AP algorithm from [9] and 

extending the fast recursive techniques and filtering update to 

multichannel ANC systems as in [5], the multichannel MFX-

DCDRAP algorithm for ANC is obtained. The filtering step 

(4) takes into account previous computed values according to 

the following equations: 

        1 1
0
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(9) 
where  nG  is a KNKN matrix.  

The filter update (5) is performed by solving the following 

linear system of equations [7]: 

      nnn T
EPIR ˆ            (10) 

using the DCD method with a leading element (Table 1), 

where )()( np
R  denotes the pth column of  the matrix )(nR .  

The only values of  nR  that require calculations are the 

upper left KK   elements given by    nnT
00

VV . The other 

elements of  nR  can be taken from  1nR  and  nG . 

Specifically, elements    KNKjin ji ,...,1, ,, R  are taken 

from     1,...,1, ,1 ,  NKjin jiR . The elements 

   KNKjKin ji ,...,1,,...,1 ,, R  and 

   KjKNKin ji ,...,1,,...,1 ,, R  are taken from 

   KNKjKin ji ,...,1,,...,1 ,, G . The MFX-DCDRAP 

algorithm is described by equations (1)-(3), (6)-(10).  

The MFX-DCDPAP algorithm uses the original DCD 

algorithm [6], while the MFX-DCDRAP uses a DCD version 

with a leading element [10]. The original DCD algorithm 

updates a solution of a linear system of equations in directions 

of Euclidian coordinates in the cyclic order and with a step size 

  that takes one of bM  (number of bits) predefined values 

corresponding to a binary representation bounded by an interval 



 HH  ,  [6], [9]. The algorithm starts the iterative search 

from the most significant bits of the solution and continues 

until the least significant bits were updated. The algorithm 

complexity is limited by uN , the maximum number of 

“ successful” iterations [6]. The comparisons are counted as 

additions, as shown in [10]. With uN  updates, the number of 

additions of the leading element DCD version is upper limited 

by bu MNN 2 , while the complexity of the original DCD 

version is upper limited by   112  bbu MMNN  

additions. For 16bM  (which is a typical number of bits 

used for representation of filter taps) and 32uN , the 

maximum number of additions in the DCD algorithm with a 

leading element is less than that in the original DCD version. 

It can be seen from Table 1 that the filtering update is 

incorporated in the DCD procedure, thus resulting in reduction 

of the number of multiplications per iteration compared to the 

previous MFX-DCDAP or MFX-DCDPAP algorithm. The 

memory requirements of the MFX-DCDRAP algorithm are 

higher than that of the MFX-DCDPAP algorithm because 

several matrices and vectors from previous iterations are needed 

at the following iteration.  

 

Table 1: Code describing the dichotomous coordinate descent  

(DCD) algorithm with ‘leading’ element and incorporated filter 

update. 

 

3. COMPUTATIONAL COMPLEXITY 

 

The number of multiplications per algorithm iteration for the 

MFX-DCDRAP algorithm is: 

 
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22




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The number of multiplications per algorithm iteration for the 

MFX-LMS algorithm is [11]: 

  KJKMIJLLMIJKM LMSMFX  2          (12) 

The number of multiplications per algorithm iteration for the 

MFX-DCDPAP algorithm is [8]: 

  JKMIJLKNLMIJKM DCDPAPMFX  32  (13) 

The maximum number of additions per algorithm iteration 

for the MFX-DCDRAP algorithm is: 
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The number of additions per algorithm iteration for the MFX-

LMS algorithm is: 

     112  MJKKLIJLMIJKA LMSMFX             

(15) 

The maximum number of additions per algorithm iteration for 

the MFX-DCDPAP algorithm is: 
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Table 2 shows the number of multiplications and additions 

for the MFX-LMS algorithm and the DCD based algorithms 

when 150 ,64 ,2 ,2 ,1  LMKJI , and two values of 

N ( 5N  and 13N ).  

It can be seen that the MFX-DCDRAP algorithm is less 

complex than the MFX-LMS algorithm in terms of additions 

and multiplications. For 13N , its number of multiplies and 

additions per iteration are smaller than those of the MFX-

DCDPAP for a smaller projection order ( 5N ), and this 

justify its use in the next section for performance comparison. 

Usually we have },,,{ NKJIL  in practical 

implementations and in most cases, the MFX-DCDRAP 

algorithm is less complex than the MFX-DCDPAP algorithm. 

For the investigated parameters, the number of additions of 

the DCD part in the MFX-DCDRAP algorithm represents only 

a small fraction of the total number of additions (about 4% for 

5N ). However, this fraction is several times higher for the 

MFX-DCDPAP algorithm (about 12% for 5N ). This 

fraction increases with increasing N (e.g. for 13N , the ratio 

is only about 7% for the MFX-DCDRAP algorithm and more 

than 27% for the MFX-DCDPAP algorithm).  

 

Algorithm for multichannel 

ANC 

Multiplies per 

iteration 

Additions per 

iteration 

MFX-LMS [10] 3018 3003 

MFX-DCDPAP ( 5N ) 3198 3524 

MFX-DCDRAP ( 13N ) 3156 3311 

MFX-DCDRAP ( 5N ) 2372 2431 

Table 2: Comparison of the number of multiplies and 

additions per iteration of the MFX-LMS, MFX-DCDRAP and 

MFX-DCDPAP algorithms for ANC 

( 4,64,150  uNML , 2,3,1  KJI ). 

 

Initialization:     1 ,2/ ,ˆ ,0  mHnn ErP  

For uNk ,...,1  

  iKNi rp 1,...,0max arg   

              while      bppp Mmnr  &2/ ,R  
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           if bMm  , go to Eq. (8) 
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4. SIMULATIONS 

 

The new MFX-DCDRAP algorithm, and MFX-DCDPAP 

algorithm were simulated, and compared to the multichannel 

modified filtered-x LMS algorithm (MFX-LMS, [5]). The 

simulation was performed with acoustic transfer functions 

experimentally measured in a duct. The impulse responses used 

for the multichannel acoustic plant had M=64 taps each, while 

the adaptive filters had 150L  taps each. In the case of ideal 

plants, the step size of all algorithms has been chosen in order 

to have the same final attenuation. For all the affine projection 

algorithms, the step size was 5.0 , while for the MFX-

LMS algorithm it was 5102  . The regularization factor 

is 
3102  . The parameter H of the DCD algorithm was set 

to 1/128. The performance of the algorithms was measured by 
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and have been averaged over 40 simulations.  

 
Fig. 2. Convergence curves for multichannel delay-compensated 

modified filtered-x algorithms for ANC with ideal plant models 

( 16,64,150,2,3,1  bMMLKJI ). 

 

Figure 2 compares the performance of the selected 

algorithms, with ideal plant models, for a multichannel system 

(I=1, J=3, K=2), obtained from Matlab™ simulations. The 

tracking behavior performance is also investigated by suddenly 

changing the sign of plant model coefficients after 125000 

iterations. As expected, both DCD based algorithms have 

higher convergence speed and better tracking performances than 

the MFX-LMS algorithm, which needs many more iterations 

to reach the same final attenuation. For the projection order 

5N  and 16bM , even one DCD iteration in the MFX-

DCDRAP algorithm leads to a superior convergence 

performance over the MFX-LMS algorithm. As expected the 

convergence speed increases if the number of iterations is 

increased (e.g. from 1 to 4 in Figure 2). The MFX-DCDPAP 

algorithm achieves superior performance over the MFX-

DCDRAP algorithm if the same bM , uN  and H  parameters 

are used. However, for similar number of multiplications, the 

MFX-DCDRAP algorithm can use a higher projection order 

(e.g. up to 13 instead of 5 for the investigated I, J, K, L, M 

values – see numerical complexities in Table 2). It can be seen 

that the MFX-DCDRAP algorithm with 13N  has a faster 

convergence speed than the MFX-DCDPAP algorithm using 

5N .  

 

5. CONCLUSIONS 

 

The multichannel MFX-DCDRAP algorithm has been 

introduced for practical active noise control systems using FIR 

adaptive filtering. It has been shown to provide a significant 

improvement of the convergence speed over the MFX-LMS 

algorithm, with a smaller computational complexity for typical 

projection orders. Its performances were also compared favorably 

with the previously published MFX-DCDPAP algorithm. It 

was shown that it is a good candidate for practical real-time 

implementation.  
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