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ABSTRACT 

 

It is well known that the affine projection algorithm (APA) 

offers a good tradeoff between convergence rate/tracking and 

computational complexity. Recently, the evolutionary APA (E-

APA) with a variable projection order has been proposed. In 

this paper, we propose a variable step size (VSS) version of the 

E-APA, called VSS-E-APA. It is shown that the VSS-E-APA 

is robust to near-end signal variations. Also, it has both a fast 

convergence speed and a small steady-state error and a much 

reduced numerical complexity than the VSS-APA. 

 

Index Terms— adaptive filters, affine projection 

algorithm, variable step size, echo cancellation.  

 

1. INTRODUCTION 

 

In echo cancellation systems, an adaptive filter is used to 

reduce the echo. The well-known normalized least-mean-square 

(NLMS) algorithm has been widely used in this context. 

Nevertheless, it converges slowly for acoustic echo cancellation 

(AEC) applications, where long length adaptive filters are used 

in order to model the acoustic echo paths. The affine projection 

algorithm (APA) [1] can be considered as a generalization of the 

NLMS algorithm that provides an improved convergence speed, 

especially for highly correlated signals, such as speech. In terms 

of convergence rate, the APA has a performance that rivals with 

the more complex recursive least-squares (RLS) algorithm in 

most practical situations. Many fast affine projection (FAP) 

algorithms have been proposed for acoustic echo cancellation 

systems (e.g., based on embedded fast RLS algorithm [2], 

Gauss-Seidel iterations [3], dichotomous coordinate descent 

(DCD) iterations [4], displacement structure theory [5], etc.). 

All previously mentioned FAP versions use a fixed projection 

order. It is known that if the projection order increases, the 

convergence speed is faster, but the steady-state error also 

increases. A variable projection order might lead to a lower 

steady-state error. In [6], an affine projection algorithm with an 

evolving projection order, called evolutionary APA (E-APA) 

was proposed. Based on findings from [7-8], the projection 

order was modified depending on the relationship between the 

output error and a threshold. However, the authors do not 

investigate practical implementations with reduced numerical 

complexity. Also, the E-APA uses a fixed step size. A variable 

step size (VSS) version could be a more reliable solution in 

case of near-end signal variations, including double-talk. Such a 

solution has been presented in [9] and the VSS-APA algorithm 

was proposed. It was shown that the VSS-APA is more robust 

in adverse conditions than the APA. Also, a computationally 

simpler version based on DCD, called VSS-DCD-AP was 

proposed in [10]. In this paper the same step size computational 

method is adapted to the less computationally demanding E-

APA. A new algorithm, called variable step size evolutionary 

APA (VSS-E-APA) is proposed and compared with previously 

published E-APA and VSS-APA.  

The outline of the paper is as follows. The proposed 

evolutionary APA using a VSS scheme (VSS-E-APA) is 

described in Section 2. In Section 3, the behavior of this 

algorithm for AEC systems is examined and compared to the 

VSS-APA and E-APA. Section 4 concludes this work. 
 

2. VSS-E-APA  

 

In the AEC configuration, the far-end signal,  x n , goes 

through the echo path h, providing the echo signal,  y n . 

This signal is added to the near-end signal,  n  (which can 

contain both the background noise and the near-end speech), 

resulting the microphone signal,  d n . The adaptive filter, 

defined by the vector  ˆ nh , aims to produce at its output an 

estimate of the echo,  ŷ n , while the error signal,  e n , 

should contain an estimate of the near-end signal.  

Through this paper, the following notation will be used: L 

is the length of the adaptive filter, nK  is the projection order 

of the E-APA at iteration n, maxK  is the maximum projection 

order, δ  is the regularization parameter, 

       0 1 1, ,...,
n nK Kn diag n n n   

 
 

μ  is the variable 



step-size diagonal matrix whose dimension varies with nK , 

and its maximum size is maxK , 0  a small constant to avoid 

division by zero, 
nKI  denotes the n nK K identity matrix, at 

time instant n,         1 ... 1
T

nn d n d n d n K     d is 

the desired vector,        ˆ ˆ ˆ 1 ... 1
T

nn y n y n y n K     y  

is the filter output vector, superscript T denotes transposition, 

and        , 1 ,...,  1
T

n x n x n x n L     x  is the input 

signal vector. Also, we have the data matrix 

        1 ... 1nn n n n K     X x x x ,  nR  is the 

n nK K  auto-correlation matrix of the input signal, i.e., 

     
n

T
Kn n n  R X X I , the adaptive filter coefficients 

vector is      0 1
ˆ ˆˆ ,...,

T

Ln h n h n
 
 

h , and 

       max, 1 ,...,  1
T

n x n x n x n K     ξ  is a max 1K   

vector. Also,  nr  is a max 1K   autocorrelation vector, 

 np  is a 1nK   solution vector, and finally,  ne  is a 

1nK   vector.  

The computation of the matrix  nR  can be made in an 

efficient way taking into account its symmetry. However, the 

size of this square matrix varies depending on the chosen 

projection order. There are two possible situations. In the first 

situation, if the projection order at time n is smaller than or 

equal to the projection order at time n – 1, the matrix  nR  is 

updated by replacing the first row and column with the 

elements of  nr , while the bottom-right    1 1n nK K    

sub-matrix is replaced with the top-left    1 1n nK K    

sub-matrix of  1nR . In the second situation, if 

1n nK K  , the matrix  nR  is updated by replacing the 

first row and column with the elements of  nr , while the 

other elements are replaced with  1nR . The update of 

 nr  is made on full max 1K   vector, although only 1nK   

vector is needed for updating  nR . The equations that define 

the proposed VSS-E-APA are summarized in the following 

table. The noise variance, σv
2
, can be estimated online as in [9-

11], or during the periods of silence, and the forgetting factor   

is evaluated as in [11].  The equations (11)—(14) from the 

Table 1 are introduced from the VSS-APA. However, the 

projection order can vary and therefore  ne cannot be used to 

compute all  2
1l

e n
  elements (especially for 

max.. 1nl K K   if maxnK K ). An approximation is made 

by using previous  2
1

1
l

e n


  values [see Eq. (10) from Table 

1].  
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(1) 

For time index 1,2,...n    

           1  n n x n n x n L n L     r r ξ ξ

 

(2) 

     ˆ 1Tn n n y X h  (3) 

     n n n e d y  (4) 
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IF  2
ne n    

 1 maxmin 1,n nK K K 
 

(7) 

ELSE IF  2
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    1max 1,1n nK K    (8) 
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IF maxnK K   
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END  
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For  0l   to 1nK    
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(14) 

Update  nR using  nr  (15) 



     
nKn n nE μ e  (16) 

Solve      n n nR p E  (17) 

       ˆ ˆ 1n n n n  h h X p  (18) 

TABLE 1. VSS-E-APA Equations. 

 

It will be shown in the next section that the effect of the 

approximation on convergence performance is not important. 

The VSS-APA has    3

max max2 6 6L K O K    

multiplications (the projection order is 
maxK ) [4] and the E-

APA with the presented matrix update procedure has 

   32 3 nnL K O K  . In our implementation, for specific 

algorithm iteration where the chosen projection order is nK , 

the VSS-E-APA has    3
max2 1 3 8 nnL K K O K     

multiplications, and the contribution of the VSS part is 

max3 6K   multiplications. It is obvious that the VSS part is 

only a very small fraction of the complexity of the VSS-APA 

and VSS-E-APA because maxL K  in typical AEC systems. 

 

3. SIMULATIONS 

 

Simulations were performed in an AEC context and VSS-

APA, E-APA, and VSS-E-APA were compared. The measured 

impulse response of the acoustic echo path is plotted in Fig. 1a 

(the sampling rate is 8 kHz); its entire length has 1024 

coefficients. This length is truncated to the first 512 coefficients 

(exact modeling case). An independent white Gaussian noise 

signal is added to the echo signal  y n , with 30 dB signal-to-

noise ratio (SNR) for most of the experiments and 0.2  . 

The maximum considered value of the projection order for all 

simulations is max 8K  . In the following experiments, the 

speech sequence from Fig. 1b is used as the far-end signal and 

the signal from Fig. 1c is used as a near-end signal. The 

performance for the exact modeling scenario is evaluated in 

terms of the normalized misalignment (in dB), defined as 

 10
ˆ20log /n 

 
h h h , where   denotes the l2 norm. 

Fig. 2a shows the misalignment curves in case of a single-

talk scenario where a sudden change in the echo path after 21 

seconds is simulated. In terms of the final misalignment, it can 

be seen that the variable projection order versions have a very 

close performance to that of VSS-APA. Initially, in the 

convergence phase, most of projection orders are chosen closer 

to the maximum allowed projection order, while in the steady 

state phase the projection orders are close to the minimum 

allowed projection order (Fig. 2b). The reduction in complexity 

of the evolutionary APAs is important (an average of 2200 

multiplications for the E-APA and 2150 multiplications for the 

VSS-E-APA as opposed to 8400 for the VSS-APA). That 

corresponds to around 75% complexity reduction of VSS-E-

APA in comparison with VSS-APA.  

 
Fig. 1. a) Measured room acoustic impulse response. b) Far-end 

speech signal used in the experiments. c) Near-end speech signal 

used in the last experiment. 

 
Fig. 2. a) Misalignment of the VSS-APA (p=8), E-APA, and 

VSS-E-APA. Single-talk case, L = 512, and SNR = 30dB. b) The 

projection orders chosen by the VSS-E-APA. 

 

In Fig. 3, the investigated algorithms are used in a double-

talk situation in conjunction with a Geigel DTD. Its settings 

were chosen as in [11]. It can be noticed from Fig. 4a that the 

robustness to double talk situations of the VSS-E-APA and 

VSS-APA is much better than that of E-APA. The E-APA is 

affected, even if it uses the Geigel DTD. It can be seen from 

Fig. 3b that the presence of near-end signals leads to the choice 

of many higher projection orders nK  in case of E-APA towards 

the end of the speech sequence. This fact doesn’t happen with 

VSS-E-APA that has mostly lower projection orders towards 

the end of the speech sequence (Fig. 3c).  



Fig.4 shows the number of occurrences in the previously 

investigated cases. It can be noticed in Fig. 4a that most of 

nK  are 1 or 2 in the single-talk case. 

 
Fig. 3. a) Misalignment of the VSS-APA (p=8), E-APA, and 

VSS-E-APA. Double-talk case, exact-modelling case, L = 512, 

SNR = 30dB, and Geigel DTD is used. b) The projection orders 

chosen by the E-APA. c) The projection orders chosen by the VSS-

E-APA. 

 

The VSS-E-APA reduced complexity advantage over E-

APA in the double-talk case is proved by the distribution of the 

chosen projection order shown in Fig. 4c and Fig. 4b 

respectively. The number of 1nK   and 2nK   in case of 

VSS-E-APA overcomes the number of occurrences of 8nK  . 

In the E-APA case, there are twice 8nK   than the sum of all 

the other projection orders.  

 
Fig. 4 The number of occurrences of each projection order 

between 1 and 8 for: a) VSS-E-APA in the single talk case. b) E-

APA in the double-talk case c) VSS-E-APA in the double-talk 

case 

 

The average number of multiplications is 6190 for the E-

APA and only 3600 for the VSS-E-APA. Therefore, the 

complexity reduction over VSS-APA is about 26% for E-APA 

and more than twice for VSS-E-APA (67%). Also, VSS-E-

APA is about 40% less complex than E-APA. Similar 

conclusions were obtained in the background noise variation and 

under-modeling case (not shown here due to the lack of space). 

In these cases, the computational savings of VSS-E-APA are 

significant and can reach 50% over E-APA and even 80% in 

comparison with VSS-APA.  

 

4. CONCLUSIONS 

 

The VSS-E-APA has been proposed for AEC. A variable 

step size was used in order to take into account the existence 

and the non-stationarity of the near-end signals. Simulation 

results have shown the superiority of the VSS-E-APA over the 

E-APA to near-end signal variations. The VSS-E-APA can be 

combined with a simple Geigel DTD in order to enhance its 

performance. The proposed algorithm leads to a more efficient 

implementation and significant computational savings in 

comparison with the VSS-APA and E-APA. 
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