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Abstract— In this paper, a new recursive least-squares 
algorithm (RLS) for multichannel active noise control using the 
Gauss-Seidel method is proposed. It is shown that the proposed 
algorithm has a much lower complexity than the previously 
published modified filtered-x RLS algorithm, with similar 
convergence property and good numerical stability. Its 
logarithmic number system implementation is also presented. 

I. INTRODUCTION  
Active noise control (ANC) systems are being increasingly 

researched and developed [1]. The delay compensated or 
modified filtered-x structure for active noise control systems 
using FIR adaptive filtering was introduced in [2], and it is 
presented in Fig. 1. The structure in Fig. 1 eliminates the plant 
delay by computing an estimate of the primary field signals, 
which are unaffected by the changes of the adaptive FIR filter 
coefficients.  

 
Figure 1.  A delay compensated or modified filtered-x structure for active 

noise control. 

A delay compensated or modified filtered-x structure for 
active noise control. For ANC using adaptive FIR filters, the 
multi-channel filtered-x least-mean-square (FX-LMS) 
algorithm [1-2] is the most commonly used algorithm. The 

drawback of the FX-LMS algorithm is the slow convergence 
speed, especially for broadband multi-channel systems. 
Although it converges faster than the FX-LMS algorithm, the 
delay compensated or modified filtered-x LMS algorithm 
(MFX-LMS) [2-3] also suffers from the same slow 
convergence problem, especially for multi-channel systems. 
The RLS based algorithms have a faster convergence speed. 
However, their complexity is much higher. Also, they often 
are affected by numerical instability [3]. Yet, the additional 
computational cost or the potential numerical instability in 
some of the proposed RLS algorithms for ANC can prevent 
the use of those algorithms for some applications.  

In this paper, we use the formulation of the RLS problem 
in terms of a sequence of auxiliary normal equations with 
respect to increments of the filter weights [4]. This approach 
was applied to the exponentially weighted case and a new 
structure of the RLS algorithm was derived. In Section II, we 
propose the adaptation of the transversal Exponential RLS 
(ERLS) algorithm to multi-channel active noise control 
systems. We use the Gauss-Seidel method for solving the 
auxiliary linear system instead of the dichotomous coordinate 
descent algorithm [4]. Therefore a new algorithm called the 
multi-channel delay-compensated modified filtered-x Gauss-
Seidel Exponential Recursive Least Square algorithm (MFX-
GS-ERLS) is proposed. In Section III, we describe the 
logarithmic number system (LNS) implementation of the 
proposed algorithm [5-6]. Section IV presents simulation 
results of the proposed algorithm. A comparison of the 
numerical complexity of the proposed algorithm with the 
classical RLS algorithm is presented in Section V. Section VI 
concludes this work. 

II. MULTICHANNEL MODIFIED FILTERED-X GAUSS 
SEIDEL EXPONENTIAL RECURSIVE LEAST SQUARE 

ALGORITHM 
To describe the multi-channel delay-compensated 

Modified Filtered-X Gauss-Seidel Exponential Recursive 
Least Square algorithm (or MFX-GS-ERLS), the following 
notations are defined:  I is the number of reference sensors in 



an ANC system; J is the number of actuators in an ANC 
system; K is the number of error sensors in an ANC system; L 
is the length of the adaptive FIR filters; M is the length of  

 (fixed) FIR filters modeling the plant in an ANC system 

)(nxi  value at time n of the i th reference signal  

 )(njy  value at time n of the j th actuator signal 

)(nkd  value at time n of the primary sound field at the  

k th error sensor  

)(nke  value at time n of the k th error sensor  

)(ˆ nkd  estimate of )(nkd , computed in delay-compensated 
or modified filtered-x structures 

)(ˆ nke  value at time n of an alternative error signal for the k 

th sensor, computed in delay-compensated or modified filtered-
x structures 

mkjh ,,  value of the m th coefficient in the (fixed) FIR filter 

modeling the plant between )(njy  and )(nke  

)(,, nkjiv   value at time n of the filtered reference signal 

)(,, nljiw  value at time n of the l th coefficient in the adaptive 

FIR filter linking )(nix  and )(njy  

)(nR  IJLIJL ×  auto-correlation matrix. )(nR  is 
initialized as an identity matrix multiplied by the  
regularization factor δ . 
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)(nr  correlation matrix of size IJLIJ ×− )1( , initialized 
with zero values 

)(nr  correlation matrix of size IJIJ × , initialized with 
zero values 

)(na , ( )nC  and ( )nw  are  1×IJL  vectors used in solving the  

auxiliary equations.      
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We have ( ) ( ) ( ) ( )nnnn TeVaC ˆ−= λ  and 
( ) ( ) ( ) ( )nnnn wRCa −= . We assume that )(na is a null vector  

(corresponds to the ideal solution). We solve the linear system 
( ) ( )nnnn TeVwR ˆ)()( =  with one Gauss-Seidel iteration [7]. 

An important complexity reduction is obtained and the 
simulations have shown that the stability of the proposed 
algorithm is improved as well. 

The multi-channel filtered-x Gauss-Seidel exponential 
recursive least square algorithm is defined by the following 
equations: 
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( ) ( ) ( ) ( )nnnn T
00 VVrr += λ                                                 (5) 

( ) ( ) ( ) ( )nnnn T
rVVrr 0+= λ                                                   (6)      (22)   

( ) ( )nnnn TeVwR ˆ)()( =                                                          (7) 

( )nnn www −=+ )()1(                                                         (8) 

III. THE LOGARITHMIC NUMBER SYSTEMS 
As an alternative to floating-point, the logarithmic number 

system offers the speed advantages when implementing 
algorithms with many multiplication, division and square-root 
operations. These advantages are, however, offset by the 
problem of performing logarithmic addition and subtraction. 
The LNS arithmetic operations are presented in Table 1.  
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Figure 2.   IEEE standard single precision floating point representation and 
the 32-bit LNS format. 

TABLE I.  LNS ARITHMETIC OPERATIONS. 

x + y ADD Lz = Lx + log(1+2^(Ly-Lx)), Sz 
depends on sizes of x,y 

x - y SUB Lz = Lx + log(1-2^(Ly-Lx)), Sz 
depends on sizes of x,y 

x * y MUL Lz = Lx + Ly, Sz = Sx OR Sy 
x / y DIV Lz = Lx - Ly, Sz = Sx OR Sy 
x^2 SQU Lx << 1, Sz = Sx 

x^0.5 SQRT Lx >> 1, Sz = Sx 
x^-1 RECIP Lz = Lx, Sz = -Sx 

x^-0.5 RSQRT Lz = Lx >> 1, Sz = -Sx 
 

The 32-bit floating-point representation consists of a sign, 
8-bit biased exponent, and 23-bit mantissa. The LNS format is 
similar in structure (see Fig. 1). The 'S' bit again indicates the 
sign of the real value represented, with the remaining bits 
forming a 31-bit fixed point word in which the size of the 
value is encoded as its base-2 logarithm in 2's complement 
format. The chosen format compares favorably against its 
floating-point counterpart, having greater range and slightly 
smaller representation error [5]. A 20-bit LNS format is 
similar. It maintains the same range as the 32-bit, but has 

precision reduced to 11 fractional bits. More details about the 
logarithmic number system and some of its applications are 
available in [5-6].  

IV. SIMULATIONS 
The new MFX-GS-ERLS algorithm was simulated and 

compared to the previously published multi-channel modified 
filtered-x LMS algorithm (MFX-LMS, [3]), multi-channel 
modified filtered-x affine projection algorithm (MFX-AP, [3]) 
and the multi-channel modified filtered-x RLS algorithm 
(MFX-RLS, [3]). We used in our simulation 

995.0,3,3,1 ==== λKJI  and the reference signal was a 
white noise with zero mean and variance one. The simulations 
were performed with acoustic transfer functions 
experimentally measured in a duct. The impulse responses 
used for the multi-channel acoustic plant had 64 samples each 
( 64M = ), while the adaptive filters had 100 coefficients 
each ( 100L = ). The step size µ  for the MFX-LMS 
algorithm was 52 10−⋅ . The performance of the algorithms was 
measured by  
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Figure 3.  Convergence curves of  multichannel delay-compensated 
modified filtered-x algorithms for ANC with ideal plant models 

Fig. 3 compares the performance of the selected 
algorithms with ideal plant models, for a multi-channel ANC 
system obtained from Matlab™ implementations of the 
algorithms (double precision 64 bits floating point format). It 
can be seen that the MFX-GS-ERLS and MFX-RLS 
algorithms have the same convergence speed. Also, it can be 
seen that the MFX-GS-ERLS algorithm has a small loss in 
attenuation due to the approximation used in deriving the 
algorithm. As expected, their convergence performance is 
better than that of the MFX-LMS and MFX-AP algorithm (a 
projection order of N =5 was used).  



An accurate standard for comparison of the outputs of the 
LNS implementation of MFX-GS-ERLS and MFX-RLS was 
obtained by presenting the input data to their double precision 
versions and compute the accumulated absolute sum of errors 
of the 20-bit or 32-bit LNS outputs.  

 
Figure 4.   (upper) The acummulated absolute sum of errors for 20-bit LNS 
implementations of the investigated algorithms; (lower) The acummulated 
absolute sum of errors for 32-bit LNS implementations of the MFX-GS-

ERLS algorithm. 

The accumulated absolute sum of errors for the 32-bit 
LNS implementation of MFX-GS-ERLS (solid line in Fig. 4 - 
lower) is smaller than that of the 32-bit LNS implementation 
of MFX-RLS algorithm (dotted line). The 32-bit LNS 
implementation was stable in our simulations and the results 
were virtually identical to the double precision results. 
Similar results were also reported in [6] using another class of 
algorithms. As expected, the accumulated absolute sum of 
errors for the 20-bit LNS implementation is much higher than 
that of the 32-bit LNS implementation. However, few dB 
losses in attenuation and signs of instability are possible if the 
20-bit versions are used. 

V. COMPUTATIONAL COMPLEXITY 
The computational complexity of the proposed algorithms 

was estimated by the number of multiplications required per 
iteration. Matrix inversions were assumed to be performed 
with standard LU decomposition that requires { }2/3XO   
multiplications, where X  is the size of a square matrix.  As a 
reference for comparison, the number of multiplications per 
MFX-RLS algorithm iteration is [3]: 
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The number of multiplications per MFX-GS-ERLS 
algorithm iteration is: 

 ( ) )1(222 ++++++ IJKMKIJIJKIJLIJL                 (11) 

TABLE II.  COMPARISON OF COMPUTATIONAL LOAD OF                     
MFX-GS-ERLS ALGORITHM WITH OTHER DELAY-COMPENSATED MODIFIED 

FILTERED-X ALGORITHMS FOR ANC 

Algorithm for 
multichannel 
ANC, L=100, 
M=64, N=5 

Multiplies per 
iteration for I=1, 

J=1, K=1 

Multiplies per 
iteration for I=1, 

J=3, K=2 

MFX-LMS 428 2268 

MFX-AP 3916 37968 

MFX-GS-ERLS 10728 97068 

MFX-RLS 30730 455278 

 

It can be seen from Table II that the MFX-RLS algorithm 
has many more multiplications per iteration than the MFX-
GS-ERLS algorithm. The reduction in complexity depends on 
the values of the parameters (I, J, K, L, M). For example, for 
the mono-channel case the reduction is about 65%, while it is 
about 80 % for the investigated parameters of the multi-
channel case.    

VI. CONCLUSIONS 
The MFX-GS-ERLS algorithm was introduced for multi-
channel ANC.  It is shown that it has similar converge speed 
obtained with a significant lower complexity than that of the 
MFX-RLS algorithm. Also, the MFX-GS-ERLS showed better 
numerical properties than the original MFX-RLS algorithms 
in logarithmic number system simulations.  
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