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ABSTRACT 
A new proportionate-type affine projection algorithm with 

intermittent update of the weight coefficients is proposed. It 
takes into account the “history” of the proportionate factors and 
uses a fast recursive filtering procedure. Also, the effect of 
using dichotomous coordinate descent iterations is investigated. 
Simulation results indicate that the proposed algorithm has 
improved performance and much lower computational 
complexity than other proportionate affine projection 
algorithms. Therefore it represents a practical solution for 
acoustic echo cancellation systems. 

 
INTRODUCTION 
  
 There are many adaptive algorithms proposed for echo 
cancellation [1], [2]. Among the most used algorithms are the 
normalized least mean square (NLMS) algorithm, the affine 
projection algorithm (APA) [3], and its fast versions, (e.g., [4]–
[9]). They have also proved useful for other applications such 
as hearing aids [6] and active noise control [7]. It is known that 
the echo paths are often sparse [1]. The sparseness character of 
the echo paths has been exploited by updating filter coefficients 
independently and proportionally to their estimated magnitude. 
One of the first proportionate-type algorithms was proposed by 
Duttweiler [10], and it was termed the proportionate 
normalized least-mean-square (PNLMS) algorithm. An 
improved version has been proposed in [11]. Also, several 
proportionate-type APAs were developed, (e.g., µ- PAPA 
[12], improved PAPA (IPAPA) [13], memory IPAPA (MIPAPA) 
[14], MIPAPA (MMIPAPA) [15], and AMIPAPA [16]). 
In Section 2 a presentation of the dichotomous coordinate 
descent (DCD) method is made. The DCD method was first 
time used in an affine projection algorithm proposed in 2005 
[5]. Three years later, a fast recursive filtering proved useful in 
reducing the complexity of the affine projection algorithm [17]. 
In [18] a proportionate APA using fast recursive filtering and 
DCD methods, called FMIPAPA-DCD, was introduced. One of 

the contributions of [19] was to use an approximation for the 
output error computation of AMIPAPA. However, this 
complexity reduction led to a reduced performance by several 
dBs, especially when using speech signals and sparse echo 
paths.  Therefore, a new algorithm with little performance 
degradation that incorporates an intermittent update of filter 
coefficients depending on a computed threshold is proposed. 
Although the threshold is derived for the affine projection 
algorithm [21] the simulations show that it is effective enough 
for proportionate affine projection algorithms. The algorithm 
also uses a new combination of recursive filtering, 
dichotomous coordinate descent iterations and an 
approximation of a matrix in order to further reduce its 
numerical complexity in terms of multiplications. The new 
algorithm is termed intermittently update approximated 
FMIPAPA-DCD (IUAFMIPAPA-DCD). 

law

µ-law

 The paper is organized as follows. A short overview of the 
proportionate-type algorithms for echo cancellation is given 
and a new algorithm is derived afterwards. The simulations 
compare the proposed algorithm with other proportionate AP 
algorithms in the context of echo cancellation. Finally, the 
conclusions are presented.  
 

THE PROPOSED ALGORITHM 
 In an echo cancellation system, the adaptive filter and the 
unknown system are driven by the same input, the far-end 
signal x(n), where n is the time index. The reference signal is 
d(n). The adaptive FIR filter is defined by the real-valued 

coefficients vector , where 

L is the length of the adaptive filter and superscript T denotes 
transposition. The error signal is given by  

( ) ( ) ( ) ( )0 1 1
ˆ ˆ ˆˆ , ,...,

T
Ln h n h n h n−⎡ ⎤= ⎣ ⎦h

 
( ) ( ) ( ) ( )ˆ 1Te n d n n n= − −h x                          (1) 
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where x(n) = [x(n), x(n–1),…, x(n–L+1)]T is a vector containing 
the L most recent samples of the input signal. The error signal 
vector is given by  

 
( ) ( ) ( ) ( )ˆ 1Tn n n n= − −e d X h                          (2) 

 

where  is the 

reference signal vector, with p being the projection order, 

 is the error vector and 

 is the input signal 

matrix. Proportionate-type affine projection algorithms (PAPA) 
update their coefficients according to 

( ) ( ) ( ) ( ), 1 , , 1
T

n d n d n d n p⎡ ⎤= − − +⎣ ⎦d K

( ) ( ) ( ) ( ), 1 , , 1
T
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1
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n n n n

µ

δ
−

= − + − ×

⎡ ⎤+ −⎣ ⎦

h h G X

I X G X e
                         (3) 

 

where δ is a regularization constant, µ is the normalized step-
size parameter, G(n – 1) is an L x L diagonal matrix, and Ip is 
the p x p identity matrix. In the case of the memory improved 
PAPA (IPAPA) [13], the diagonal elements of G(n – 1), denoted 
by gl(n – 1), are evaluated as 

 

( ) ( )
( )

( )1
0

ˆ 111 1
ˆ2 2 1

l
l L

ii

h n
g n

L h n
α α

ξ−
=

−−
− = + +

− +∑
                         

(4) 
 

where 1 1α− ≤ < ,  and ξ  is a small positive 
constant. Let us denote [14] 

0 l L≤ < −1

⎤⎦

 
( ) ( ) ( )

( ) ( ) ( ) ( )
1

       1 1 1

n n n

n n n n p

= −

= − − − +⎡⎣

P G X

g x g x� K �
           

(5) 

              

 
where g(n – 1) is a vector containing the diagonal elements of 
G(n – 1) and the operator  denotes the Hadamard product 
[14]. Following a similar idea used to derive the pseudo affine 
projection algorithm [7], [9], is approximated with 

�

( )nP

 
( ) ( ) ( ) ( ) ( )' 1 ...n n n n p n p= − − − +⎡ ⎤⎣ ⎦P g x g x� � 1                          

(6) 
 

where g(n – k) are the vectors containing the diagonal elements 
of the matrixes G(n – k), with k = 1, 2, …, p [14]. The 

computational complexity is lower if compared to (5), because 
(6) can be written as 

 
( ) ( ) ( ) (1' 1 'n n n n− )1⎡ ⎤= − −⎣ ⎦P g x P�                          (7) 

 
where the matrix  

 
( )

( ) ( ) ( ) ( )
1' 1

2 1 ...

n

n n n p n p
− − =

1⎡ ⎤− − − − +⎣ ⎦

P

g x g x� �
              

(8) 
 

contains the first p – 1 columns of (' 1n )−P . The MIPAPA 
equations are written as in [16]: 

 
( ) ( ) ( )'

1
T

pn nδ= +S I X P n

n

n

                         (9) 

 
( ) ( ) ( ) ( ) ( )' 1

1
ˆ ˆ 1n n n nµ −= − +h h P S e                          (10) 

 
Important computational savings for large projection orders and 
filter lengths can be achieved if the approximation from [16] is 
used. The coefficients of the approximated MIPAPA 
(AMIPAPA) are given by [16] 

 
( ) ( ) ( ) ( ) ( )' 1

2
ˆ ˆ 1n n n nµ −= − +h h P S e                          (11) 

 
where, ( )2 nS , is updated by changing both its first row and 

column with . The bottom-right ( ) ( )'T n nx P ( ) ( )1 1p p− × −  

submatrix of ( )2 nS  is replaced with the top-left 

( ) ( )1p p 1− × −  submatrix of . The regularization 

factor, 
(2 1n −S )

δ , is added at the end on the diagonal of ( )2 nS . This is 
a different matrix update procedure than that of [16].  

 A recursive filtering approach similar to that of [17] can 
exploit the time-shift property of . The following 
equation is obtained: 

( )' nP

 

( ) ( ) ( )

( ) ( ) ( ) ( )
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 where ( ) ( ) (ˆ1 1k Ty n n p n )2− = − − −x h . Also, we obtain: 
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where 
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If we define the filter output vector 

, and  ( ) ( ) ( ) ( ), 1 , , 1
T

n y n y n y n p⎡ ⎤= − − +⎣ ⎦y K ( )ˆ nε  is the 

solution of the linear system  
 

( ) ( ) ( )2 ˆn n n=S ε e                          (18) 
 
If Eqn. (18) is solved with DCD iterations we obtain: 

 
( ) ( ) ( ) ( )ˆ 1n n n n= + −y z F ε                          (19) 

 
( ) ( ) ( ) ( )'ˆ ˆ ˆ1n n nµ= − +h h P ε n                          (20) 

 
 

The update of  involves only the computation of its first 

row and column and the bottom-right 
( )nF

( ) ( )1 1p p− × −  

submatrix of  is replaced with the top-left 

 submatrix of ([16] and [17]).  
( )nF

( ) (1p p− × − )1 )( 1n −F

However, the complexity can be further reduced using the 
intermittently updated procedure proposed in [20].  Thus, the 
update equation of (20) can be replaced by 

 

( ) ( ) ( ) ( )
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where  is the variable update interval at time n. Starting with 
an initial update interval of 1, is given by 

ni

ni
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where Mi  is the maximum update interval and γ is the 
threshold [20] computed as in (18) 

 
2

2
2

v
v

pµσ
γ σ

µ
= +

−
                         (23) 

2
vσwhere is estimated during silences [21]. Although the 

threshold is computed for the affine projection algorithm [21], 
[22], the simulations from the next section show that it is 
effective enough for proportionate affine projection algorithms 
too. It can be noticed that the numerical savings can be 
important since Eqn. (20) requires at least Lp

 mod 0n i

 multiplications 
and the filter can have hundreds of coefficients in echo 
cancellation systems. The update of the filter coefficients from 
Eqn. (21) is performed only when n = and not at 
every iteration like in Eqn. (20). The new algorithm is termed 
intermittently updated approximated FMIPAPA-DCD 
(IUAFMIPAPA-DCD). The algorithm can have a periodic 
update if the update interval is fixed to i . 1>n

DICHOTOMOUS COORDINATE DESCENT 
ALGORITHM 

In order to solve the linear system, ( ) ( ) ( )2 ˆn n n=S ε e , 
many direct or iterative methods can be used [23]. The DCD 
algorithm updates a solution of a linear system of equations in 
directions of Euclidian coordinates in the cyclic order and with 
a step size α  that takes one of  (number of bits) 
predefined values corresponding to a binary representation 
bounded by an interval 

bM

[ ]HH  ,−  [5], [17]. The algorithm starts 
the iterative search from the most significant bits of the 
solution and continues until the least significant bits were 
updated. The algorithm complexity is limited by , the 
maximum number of “successful” iterations. If H is a power of 
2, the multiplications are replaced by bit shifts. The algorithm 
has only shift and accumulate operations (SAC) and no 
divisions. As shown in previous papers (e.g. [5], [17] and [18]) 
the DCD method approximates very well the exact solution of a 
linear system if enough DCD iterations are executed. The 
maximum complexity of DCD part for our cases is 

uN

( )2 u bp N M+  SACs. 
 

SIMULATION RESULTS  
 Simulations were performed in the context of echo 
cancellation, where the input signal is either white Gaussian 
noise or speech. The first impulse response from ITU-T G168 
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Recommendation [24] is padded with zeros in order to have 
512 coefficients. The adaptive filter has 512 taps. For the first 
five figures, a white Gaussian noise with a SNR = 30 dB is 
added at the output of the echo path. The performance measure 
used is the normalized misalignment (in dB), defined as 
20log10(||h – ĥ(n)||2/||h||2), where h denotes the true impulse 
response of the echo path. In the simulations with white noise, 
the performance curves are averaged over 10 independent 
trials. The regularization constant is δ = 0.01, p = 8 and α = 0. 
In all the simulations where the input signal is a white signal, 
the step size of all algorithms is 0.1. 

 The first five figures don’t take into account the DCD 
iterations for solving Eqn. (18). This corresponds to the ideal 
system solution that DCD iterations try to approximate. 
Therefore the investigated algorithms are termed AFMIPAPA 
and IUAFMIPAPA respectively.   

 Figure 1 shows the misalignment performance of the 
periodic AFMIPAPA with fixed periodical update of filter 
coefficients. Similar conclusions as those of [20] are obtained, 
i.e., the larger the update interval, the lower steady-state error 
and the slower the convergence speed. This indicates that a 
variable updating interval for AFMIPAPA could lead to a good 
compromise between fast convergence and low steady-state 
error.   
 Figure 2 shows misalignment curves for the proposed 
IUAFMIPAPA ( ), AFMIPAPA, and the periodic 
AFMIPAPA with . The tracking ability of the algorithms 
was verified by introducing an abrupt change of the echo path 
after 25000 iterations by shifting the impulse response to the 
right by 12 samples. As can be seen, the proposed 
IUAFMIPAPA has roughly the same initial convergence as 
AFMIPAPA ( ).  

8Mi =
8ni =

1ni =

 Figure 3 shows misalignment curves for IUAFMIPAPA 
for different update intervals. Similar conclusions with those 
obtained in [20] are obtained regarding the influence of Mi .  
The time to reach steady-state increases with Mi  and the 
percentage of updates reduces with Mi  (e.g. by 65% from 

 to ). As in [20], setting 8Mi = 32Mi = Mi to the projection 
order leads to a satisfactory convergence rate. The maximum 
update interval is set to the projection order in the following 
simulations.   

 An example of computed values and their histogram for 
the case  (Figure 3) is shown in Figure 4. It can be seen 
that during the initial convergence, the updating intervals are 
closer to 1, while they are closer to 8 in the steady-state region. 

ni
8Mi =

In Figure 5 the input signal is speech. The output of the 
echo path is corrupted by independent white Gaussian noise 
SNR = 30 dB. The echo path changes after 0.5 seconds and p = 
8. It was shown in [16] that MIPAPA and AMIPAPA have 
virtually the same performance, both being superior to the 

IPAPA. Therefore only AMIPAPA curve is shown and 
compared with that of IUAFMIPAPA. The step-size for all 
algorithms is 0.2. Figure 5 shows that, in case of a speech 
signal input, the approximations used by IUAFMIPAPA and the 
intermittent update of filter weights lead to slightly reduced 
performance (around 2 dB for this example) in comparison 
with AMIPAPA.  

 

    
• Figure 1.  Misalignment of periodic AFMIPAPA for 

different update intervals, i. White noise, p = 8, L = 
512, SNR = 30 dB. 

 
• Figure 2.  Misalignment of AFMIPAPA ( 1ni = ), 

periodic AFMIPAPA with  , and IUAFMIPAPA 8ni =

8Mi = . Other conditions are the same as in Figure 

1. 
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The effect of the number of DCD iterations 
( , ) on IUAFMIPAPA-DCD is investigated in 
the next simulation. Figure 6 shows the misalignment curves of 
the IUFMIPAPA and the IUFMIPAPA-DCD for two particular 
values of (  and ). 

16bM = 256H =

uN 8uN = 16uN =
 

 
• Figure 3.  Misalignment of IUSAMIPAPA with 

,   and   respectively. Other 

conditions are the same as in Figure 1. 

8Mi = 16Mi = 32Mi =

 
• Figure 4. (a)  Computed update interval values; (b) 

histogram of computed   values  ni

 
A speech sequence is used as input, SNR = 20 dB, and echo 
path changes at 0.5 seconds, and p = 8. If less than 1.5 dB 
misalignment differences is allowed, 8 DCD iterations are 
enough for the DCD based algorithm. In case of using 16 DCD 
iterations in IUAFMIPAPA-DCD the misalignment difference 
is smaller than for the case of 8 DCD iterations.  The 

performance improvement obtained with more DCD iterations 
can be explained by examining the error norm between the 
exact solution and the solution obtained with different number 
of DCD iterations as shown in [18].  
 

 
• Figure 5.  Misalignment of the AMIPAPA, 

AFMIPAPA ( ) and IUAFMIPAPA (8ni = 8Mi = ). 

Speech sequence, p = 8, L = 512, SNR = 30 dB, and 
echo path changes at time 0.5s. 

 
• Figure 6.  Misalignment of IUAFMIPAPA and 

IUAFMIPAPA‐DCD with different number of DCD iterations (8 
and 16 respectively). 

 
  On average, the update of the filter weights in 

IUAFMIPAPA-DCD is performed only on 20% of the number 
of iterations. Overall, for the investigated cases, 
IUAFMIPAPA-DCD obtains a complexity reduction over 
FMIPAPA in terms of multiplications in the range 15%-25 %, 
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depending on the filter length, projection order and input 
signals. Therefore, IUAFMIPAPA-DCD offers a better 
performance/complexity tradeoff than FMIPAPA/MIPAPA, 
due to its reduced numerical complexity. It is particularly more 
efficient for higher projection orders, when the size of the 
linear system increases. Future work will be focused in 
adapting the techniques proposed in [25] – [27] and developing 
new variable step size and variable projection order of the 
proposed algorithm. Also, a logarithmic number system 
implementation is envisaged [28] – [29].     
 

SUMMARY AND CONCLUSIONS 
 A proportionate affine version using intermittent update of 
filter coefficients, fast recursive filtering, dichotomous 
coordinate descent iterations and a matrix approximation is 
proposed. It is shown that IUAFMIPAPA-DCD offers a good 
convergence performance/numerical complexity compromise in 
comparison with other proportionate AP algorithms.  
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