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SUMMARY 

In the field of adaptive filtering, the fast implementations of affine projection algorithms are known 

to provide a good tradeoff between convergence speed and computational complexity. Such 

algorithms have recently been published for multichannel active noise control systems. Previous 

work reported that these algorithms can outperform more complex recursive least-squares 

algorithms when noisy plant models are used in active noise control systems. This paper proposes a 

new fast affine projection algorithm for multichannel active noise control or sound reproduction 

systems, based on the Gauss-Seidel solving scheme. The proposed algorithm has a lower complexity 

than the previously published algorithms, with the same convergence speed and the same good 

performance with noisy plant models, and a potential for better numerical stability. It provides the 

best performance/cost ratio. Details of the algorithm and its complexity are presented in the paper, 

with simulation results to validate its performance.  
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1. INTRODUCTION 

 

Active noise control (ANC) systems [1],[2] work on the principle of destructive interference 

between an original "primary" disturbance sound field measured at the location of K "error" sensors 

(typically microphones), and a "secondary" sound field that is generated by J control actuators 

(typically loudspeakers). In ANC systems, a common approach is to use adaptive FIR filters, in 

either feedforward or feedback control configurations. A similar problem is found in sound 

reproduction systems [3],[4], where the acoustic response of a room between J actuators and K 

sensors needs to be inverted and compensated. Some applications are transaural audio or 

multichannel sound wavefield synthesis systems, where given waveforms have to be reproduced at 

some sensor locations. Figures 1 and 2 show block-diagrams of monochannel implementations of 

feedforward active noise control and sound reproduction systems, using adaptive FIR filters. The 

systems in Figs. 1 and 2 are delay-compensated, i.e. the stabilization time on the error signals 

caused by updates to the adaptive FIR filter coefficients has been eliminated by minimizing an 

alternative error signal [5],[6]. This structure has sometimes been called the “modified filtered-x” 

structure [7], and the use of this structure will be assumed in the rest of this paper. Also, the 

algorithms to be introduced in this paper are for feedforward adaptive active noise control, although 

it is a simple task to adapt them to either feedback adaptive active noise control (with internal model 

control (IMC) structures) [8] or sound reproduction systems [7].  

 

In the field of adaptive filtering it is well known that fast affine projection algorithms can produce a 

good tradeoff between convergence speed and computational complexity. Although these 

algorithms typically do not provide the same convergence speed as recursive least-squares 

algorithms, they can provide a much improved convergence speed compared to stochastic gradient 

descent algorithms, without the high increase of the computational load or the instability often found 

in recursive least-squares algorithms, especially for multichannel systems [7],[9]. Many multichannel 
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fast affine projection algorithms have been previously published for acoustic echo cancellation, but 

the problem of active noise control or sound reproduction is a very different one. Indeed active 

noise control and sound reproduction systems are obviously control or inverse problems, while 

acoustic echo cancellation is an identification problem (with of course its own additional constraints 

such as double-talk, etc.). This leads to different structures (such as the filtered-x structure in the 

filtered-x LMS [10] instead of the standard adaptive FIR filter structure, or other structures such as 

adjoint [7], filtered-  [10] or inverse filtered-x [11]), to different dimensions for the different signals, 

and obviously to different multichannel algorithms. 

 

Adaptive filtering algorithms based on fast affine projection algorithms have recently been published 

for multichannel active noise control [12], partly based on earlier work in [13]. It was shown that 

they can provide the expected tradeoff between convergence speed and computational complexity 

for multichannel ANC systems. It was also reported that in the realistic case where noisy plant 

models are used (i.e. for algorithms using  filtered-x types of structures), fast affine projection 

algorithms can be much more robust to plant model noise than more complex algorithms based on 

recursive least-squares, and therefore they can achieve a better convergence performance at a 

lower cost. The previously published fast affine projection algorithm for multichannel active noise 

control had a built-in sliding window recursive least-squares algorithm, because other fast affine 

projection algorithms with built-in fast transversal filters algorithms (or fast recursive least-squares 

algorithms) were found to be numerically unstable for the multichannel active noise control 

implementation. In Section 2 of this paper, a new fast affine projection algorithm using the Gauss-

Seidel inversion scheme is introduced for multichannel active noise control. It is an extension of the 

Gauss-Seidel Fast Affine Projection algorithm (or GS-FAP), published in [14], to the problem of 

multichannel active noise control. The complexity of the new algorithm is evaluated in Section 3, 

where it is shown that it is significantly lower than the previously published multichannel ANC fast 

affine projection algorithm, and typically of the same order than least-mean-squares algorithms. 
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Simulation results in Section 4 show that the convergence performance of the new proposed 

algorithm is identical to the previously published multichannel ANC fast affine projection algorithm, 

including its superior performance with noisy plant models. It is also shown that overall the new 

proposed algorithm produces the best performance/cost ratio. 

 

2. GAUSS-SEIDEL FAST AFFINE PROJECTION ALGORITHM FOR MULTICHANNEL 

ACTIVE NOISE CONTROL 

 

In this section the equations of the fast affine projection algorithm for multichannel ANC based on 

the Gauss-Seidel solving scheme are presented. The original fast affine projection algorithm can be 

found in [15],[16], and the modifications required in order to adapt the algorithm to the problem of 

active noise control (or sound reproduction) are discussed in [13]. These modifications are required 

because of the computation of “auxiliary” coefficients by fast affine projection algorithms, instead of 

the “normal” time domain coefficients which would directly link the signals from reference input 

sensors to the output actuators in ANC systems. Since the new proposed algorithm is based on the 

GS-FAP algorithm [14] and it is developed for multichannel ANC systems using a delay-

compensated or modified filtered-x (MFX) structure, it is therefore called the MFXGS-FAP for 

multichannel ANC. The previously published fast affine projection algorithm for multichannel ANC 

was using a similar delay-compensated structure, but had a built-in recursive least-squares (RLS) 

scheme instead of the Gauss-Seidel scheme, therefore it was called the MFXFAP-RLS algorithm 

for multichannel ANC [12]. In the equations below, an emphasis will be put on how the different 

signals in multichannel ANC must be structured so that the fast affine projection algorithm can be 

used. The dimensions of the different resulting signals will also be emphasized. To describe the 

MFXGS-FAP algorithm, the following notation is first defined (refer to Fig. 1): 

 

I number of reference sensors in an ANC system 
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J number of actuators in an ANC system 

K number of error sensors in an ANC system 

L length of the adaptive FIR filters 

N affine projection order 

M length of (fixed) FIR filters modeling the plant (transfer functions between the 

actuators and the error sensors) in an ANC system 

xi n( )  value at time n of the i 
th

 reference signal  

y j n( )  value at time n of the j 
th

 actuator signal 

)(n
k

d  value at time n of the primary sound field at the k  
th

 error sensor  

)(n
k

e  value at time n of the k
 th 

error sensor  

)(ˆ n
k

d  estimate of )(n
k

d , computed in delay-compensated modified filtered-x structures 

)(ˆ n
k

e  value at time n of the alternative error signal for the k
 th 

sensor, computed in delay-

compensated modified filtered-x structures 

mkj
h

,,
 value of the m

 th 
coefficient in the (fixed) FIR filter modeling the plant between 

y j n( )  and e
k

n( )  

v
i j k

n
, ,

( )  value at time n of the filtered reference signal, i.e. the signal obtained by filtering 

the xi n( )  signal with the plant model 
j,k

h  filter 
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)(
,,

ˆ n
lji

w  value at time n of the l
 th 

auxiliary coefficient in the adaptive FIR filter linking 

xi n( )  and y j n( ) . These auxiliary coefficients are the coefficients computed by  

fast affine projection algorithms.  

)(nR  KNKN   auto-correlation matrix. )(nR  is initialized as an identity matrix multiplied 

by the scalar  , where   is a regularization factor to be adjusted.  

)(nR  the top left )1()1(  NKNK values of )(nR  

)(nP  an inverse correlation matrix of size KKN   (first K columns of the inverse of 

)(nR ) 

b  a matrix of size KKN  whose elements are zeros except for the top KK  values 

which are set to an identity matrix 

)(njr  correlation vector of size 1)1( NK  associated with the j
th

 actuator, initialized 

with zero values 

)(nr  correlation matrix of size KNK  )1( , initialized with zero values 

)(nr  correlation matrix of size KK  , initialized with zero values  

)(nη  KN1  error vector 

)(nη   the first )1( NK  columns of )(nη  

)(
1

n
N 

η  the last K  columns of )(nη  

)(njx   vector of size 1IJ  sparsely filled with the I  values of xi n( ) . The rows to be 

filled with the xi n( )  values are the same I  rows associated with the j
th

 actuator 

in the signal )(nv . 
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The interlaced notation used for )(nv or )(nw  is not the only possible notation, but it is required in 

order to make )(nv  a “block time series”, for which it is possible to develop multichannel fast 

algorithms for ANC systems such as fast recursive least-squares algorithms [7],[9], or fast affine 

projection algorithms [12]. Using the above notation, the MFXGS-FAP for multichannel active noise 

control can be described by equations (1)-(10) below. Equation (2) is the equation generating the 

actual actuator output, it includes both the FIR filtering with adaptive filter )(ˆ ni,jw  and some 

compensation term )1()( nTnT
j ηr , which is needed because as previously mentioned fast affine 

projection algorithms compute auxiliary coefficients instead of the "normal" time domain 

coefficients. The auxiliary coefficients could be converted to "normal" time domain coefficients, but 

at the cost of unnecessary computations. Equation (1) is needed for the computation of a part of 

that compensation term. Equation (3) performs the filtering by the plant model which is found in all 

algorithms based on the "filtered-x" structure. Equation (4) computes estimates )(ˆ nd  of the 

disturbance acoustic signals to be canceled, which allows to fully inverse the order of the plant 

model and the adaptive filter in Fig. 1. As a consequence, the effect of the plant delay on the 

adaptive algorithm is removed [7],[8]. Also related to this and to Fig. 1 is (7), where alternative 

error signals are computed from the estimated disturbance signals )(ˆ nd  and from the adaptive filter 

coefficients )(ˆ nw . As in (2), a compensation term )1()( nTnT ηr  is added in (7), because of the 

fact that the )(ˆ nw  are auxiliary coefficients and not the "normal" time coefficients. The 

decorrelation of the error signals as in all affine projection algorithms is performed in (8), while the 

update of the adaptive filter coefficients is actually done in (10). Equations (5) and (6) are used to 

update the )(nR  matrix, for which the inverse matrix )(nP  needs to be computed. 

 

)()(~)()(~)1()( LnjLnnjnnjnj  xaxarr      (1) 
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(size: )1)()1(()1)()1(()1)1((1)1(  IJIJNKIJIJNKNKNK )   

)1()(

1

)()(ˆ)( 



 nTnT
j

I

i

ninT
i,jnjy ηrxw       (2) 

(size: )1)1())(1(1()1)(1(11  NKNKLL )      

)()(
,,

ni
T
j,k

n
kji

v xh          (3) 

(size )1)(1(11  MM ) 






J

j

nj
T
j,k

n
k

en
k

d

1

)()()(ˆ yh        (4) 

(size: )1)(1()11(11  MM ) 
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)()(~)()(~)1()( LnvLnnvnnn  aarr       (5) 

(size: ))()1(())()1(())1(()1( KIJIJNKKIJIJNKKNKKNK  )  

)()()()()1()( LnvLnTvnvnTvnn  rr      (6) 

))(())((:size( KIJIJKKIJIJKKKKK  ) 

)1()()(ˆ)()(ˆ)(ˆ  nTnTnnTnTnT ηrwvde      (7) 

(size: )1)1())(1(()1)((11  NKNKKIJLIJLKKK )    

)(ˆ)()( nTnnT
ePε          (8) 

(size: )1)((1  KKKNKN ) 

 )1()()(  nnun ηεη 0         (9) 

(size:  ))1(1(),1()1(1  NKKKNKN ) 

)(
1

)1()(ˆ)1(ˆ nT
N

Nnnn


 ηvww       (10) 

(size: )1)(()1(1  KKIJLIJLIJL ) 

 

In (9),    is a normalized convergence gain 10   , typically set to 1. To get  nP  needed in (8), 

the equation     bPR nn  is solved using one single iteration of the Gauss-Seidel method [17] for 

each column of  nP  and b . As an example, Table 1 shows a possible Matlab
TM

 implementation 

for a single iteration of the Gauss-Seidel method in the MFXGS-FAP algorithm. It shows that in 

each single iteration of the Gauss-Seidel method, the previous value of  nP  is used as initial 

conditions, and also the previous state of some internal variables is also used as initial conditions for 

those variables. For a proper initialization of the MFXGS-FAP algorithm (as for the MFXFAP-RLS 

algorithm), at the first iteration of the algorithm )(nv  should be non-zero and )1()1(  Lnvnv   

(or )1()1(  Nnvnv  ) should all be zero. The regularization factor   for the initialization of the 

matrix  nR  should also be tuned carefully. A value of   larger than necessary will lead to sub-
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optimal convergence performance, while a value of    too small will lead to increased numerical 

noise and weaker convergence performance (even if no divergence is observed).  

 

It is possible to have two versions if the MFXGS-FAP algorithm. The first one is called the "scalar 

version" and it uses the standard equations for one iteration of the Gauss-Seidel algorithm. The 

second version makes use of the fact that  nR  and b  have an inner structure made of blocks of  

size K  by  K , thus by replacing each scalar operation in the Gauss-Seidel algorithm with a matrix 

operation of size K by K , a "block version" of the MFXGS-FAP algorithm is obtained. As it will be 

shown in Section 3, for small values of K the complexity of both versions is about the same. The 

block version has the potential for better performance, because the convergence of the Gauss-

Seidel iterative scheme depends on the dominance of the main diagonal elements of  nR . In the 

case of the block version, this condition becomes the dominance of the main block diagonal. Since 

the main block diagonal of  nR  is always more dominant than only the main diagonal of  nR , the 

convergence of the Gauss-Seidel scheme should be better in the block version. However, the 

proposed MFXGS-FAP algorithm uses only one single iteration of the typically iterative Gauss-

Seidel algorithm, since there is experimental evidence that this is enough for the MFXGS-FAP 

algorithm to achieve the same performance as the theoretically more exact MFXFAP-RLS, as it 

will be shown in Section 4.  To conclude, the best convergence of the block version over the scalar 

version for this single iteration of the Gauss-Seidel algorithm means that a better inverse  nP  is 

theoretically found by the block version. But simulation results in Section 4 will show that the two 

versions actually produce nearly identical results.  

 

The MFXGS-FAP computes  nP  directly from the correlation matrix  nR  for each iteration, 

unlike the MFXFAP-RLS [12] or purely RLS-based algorithms [7],[9] which compute recurrently 

an inverse of  nR  (although  nR  is a different matrix in the case of the purely RLS-based 
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algorithms). This has two implications. First, the MFXGS-FAP has the potential for an inherently 

better numerical stability because it avoids the numerically sensitive process of inverting recursively 

 nR , and this will be addressed in the simulations of Section 4. Second, in the MFXGS-FAP 

algorithm it may not be required to invert  nR  for each iteration of the algorithm. Of course  nR  

has to be always updated but its inverse does not necessarily have to be computed for each 

iteration. This can not be done in the MFXFAP-RLS or purely RLS-based algorithms because the 

recurrent scheme of inverting  nR  can not miss any update without having undesirable effects 

caused by discontinuities. Therefore, there is a potential for further reduction of the computational 

load of the MFXGS-FAP algorithm, and this will be addressed in Section 3 and also in the 

simulations of Section 4. 

 

Although this has not been observed in our simulations of Section 4, it is possible on the long run in a 

practical implementation that the correlation values computed in equations (1), (5) and (6) become 

increasingly numerically noisy, because of the rectangular sliding window form of these equations. 

To address this potential problem, these equations could either be implemented in a moving average 

form (with "new average" = k  "old average" + (1-k)  "new data", where k is a "forgetting factor" 

between 0.9 and 1.0), or some periodic re-initialization of the algorithm could be considered.  

 

3.  COMPUTATIONAL COMPLEXITY OF THE ALGORITHMS  

 

The computational complexity of the MFXGS-FAP algorithm introduced in Section 2 is estimated by 

the number of multiplies for one iteration of the algorithm. The breakdown of the estimated 

complexity of the MFXGS-FAP is shown is Table 2, for each equation of the algorithm. The total 

estimated complexity is given by: 
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23))1((

)12(2)1))(1(22(

NKKNILNKKMJ

NKKJKNMLIJK




     (11). 

 

This is the complexity of the "scalar version" of the MFXGS-FAP. For the "block version" of the 

MFXGS-FAP, if it is assumed that matrix inversions are performed with standard LU 

decompositions, which require  23XO  multiplies for square matrices of size X , then an additional 

 23KO  multiplies is required. This additional load can often be neglected for practical systems. If 

the Gauss-Seidel scheme to compute the matrix  nP  from     bPR nn   is performed at a 

reduced rate 
p

1  (p is then the update period), as suggested in Section 2, then the complexity of 

the last component 23NK  in (11) is reduced by a factor p to become pNK 23 . Note that to 

achieve this reduction by a factor p in a practical system, the Gauss-Seidel iteration to obtain  nP  

has to be continuously computed at a reduced rate, compared to the other equations of the MFXGS-

FAP.  For example,  nP  could be computed off-line, as opposed to an on-line implementation for 

the other equations of the algorithm. Otherwise, if the computation of  nP  occurs at every  p 

iteration but needs to be computed within the time allowed for a single iteration, then there would be 

no real computational savings (only a small power consumption saving could still be achieved).  

 

In the first columns of Table 3, the number of multiplies required by the MFXGS-FAP is compared 

to other previously published adaptive FIR filtering algorithms for multichannnel active noise control 

or sound reproduction, based on least-mean-squares (LMS) algorithms [7], recursive least-squares 

algorithms [7],[9], and affine projection/fast affine projection algorithms [12]. Two cases are 

considered in Table 3: a monochannel system with 1,1,1  KJI , 64,100  ML  and a 

multichannel system with 2,3,1  KJI , 64,100  ML . For the affine projection and fast-

affine projection algorithms, projection orders of 5N  and 10N  are considered. From Table 3, 
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it is clear that except for the multichannel filtered-x LMS algorithm, the proposed MFXGS-FAP 

algorithm has the lowest computational complexity, and even more if an update rate of 
20

1  

( 20p ) is used. The simulations of Section 4 will provide some evaluation of the MFXGS-FAP 

performance with such values of p. The reduction of the complexity over the previously published 

fast affine projection algorithm for multichannel active noise control (MFXFAP-RLS) is also very 

significant, for example with 10N : from 36% of reduction (monochannel p=1) to 65% of 

reduction (multichannel p=20), on top of the expected improved numerical stability.  

 

4. SIMULATIONS OF THE MULTICHANNEL ANC ALGORITHMS  

 

In order to compare the convergence of the MFXGS-FAP algorithm with other algorithms for 

multichannel ANC, simulations were performed using both Matlab and C code (making sure that 

identical results were obtained), with experimentally measured acoustic impulse responses. The C 

code implementation was chosen to allow an easy switch between double precision floating point 

resolution (64 bits) and single precision floating point resolution (32 bits). The acoustic impulse 

responses used in the simulations were obtained from measurements made at different positions 

inside a duct (with a diameter of about 10 cm), at a sampling rate of 3kHz which was further 

downsampled by a factor of 2 in the simulations. Figure 3 shows the resulting frequency responses 

of the different secondary paths used in the simulations. The primary paths and the paths between 

the acoustic source and the reference sensors (Fig. 1) also have similar shapes for the frequency 

responses. The impulse responses of the primary paths have longer delays than the other paths, in 

order for a causal solution to exist for the simulated feedforward system. White noise was used for 

the excitation (acoustic source), and the resulting block diagram for the simulation setup is shown in 

Fig. 4. It should be noted from Fig. 4 that the reference signals (input signals of the adaptive filtering 

algorithm) and the disturbance signals to be cancelled are not white noise signals, even though the 
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excitation is a white noise signal. Other excitation signals such as tonal or multi-tonal signals could 

also have been considered, however in this case the number of coefficients required by the adaptive 

controller is typically much less (2 to 4 coefficients per tone to be cancelled), and the difference in 

performance between the different algorithms becomes less important, although it can still be 

significant.  

 

The algorithms that were implemented for a comparison with the proposed algorithm of Section 2 

are the multichannel modified filtered-x LMS and RLS algorithms [7], and the MFXFAP-RLS 

algorithm [12]. The RLS algorithm was modified to force the symmetry of the inverse correlation 

matrix, since this greatly helps the numerical stability of the algorithm [9]. The simulated system had 

the dimensions I=1, J=3 and K=2. This is to reflect the well known principle that an additional 

actuator can greatly help to find a causal solution for a broadband acoustic control system or an 

inverse acoustic system (MINT algorithm [18]). However, a system with I=1, J=3 and K=2 is 

typically underdetermined, therefore the global correlation matrix to be recurrently inverted by the 

modified filtered-x RLS algorithm is singular, and in order to avoid instability some noise (1%) was 

added to the signals used to compute this inverted correlation matrix. The experimentally measured 

impulse responses used for the secondary paths had 64 samples each ( 64M ), while the adaptive 

filters had 150 coefficients each ( 150L ). The forgetting factor coefficient in the recursive least-

squares algorithm was set to =0.995.  The step size   and the regularization factor   used by 

some algorithms were adjusted by trial and error, and the values producing the fastest convergence 

speed were selected. For all the affine projection algorithms, a value of 1.0 was used for the step 

size  , which corresponds to the use of FAP algorithms without relaxation [15], leading to the 

fastest convergence (even under noisy plant model conditions). This was also experimentally 

validated by trial and error. Note that it would be possible in practice to decrease   in order to 
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reduce the misadjustment when a steady state solution is reached (i.e. to "fine tune" the solution 

found by the adaptive filtering algorithm). 

 

For all the setups considered in the simulations, it was found that the MFXGS-FAP in its two 

versions (scalar and block versions) and the MFXFAP-RLS produced three nearly identical 

convergence curves,  for double precision and single precision floating point arithmetic, for ideal 

plant models and noisy plant models, for monochannel and multichannel systems, for different affine 

projection order, etc. The convergence curves were identical up to the second digit in dB, therefore 

no graph comparing the convergence of those three algorithms will be shown. This verifies the 

assumption that only a single iteration of the traditionally iterative Gauss-Seidel scheme is required in 

order to compute a good estimate of the matrix  nP , since results nearly identical to an algorithm 

computing exactly  nP  (the MFXFAP-RLS) were obtained. The estimate of  nP  is thus good 

enough to provide the convergence speed gain that the affine projection scheme can offer.  

 

Figure 5 shows the performance of the MFXGS-FAP algorithm for different affine projection 

orders, from 1N  to 100N . In this figure and the subsequent figures, the attenuation is defined 

as the ratio of the sum of the error signals power over the sum of primary field (i.e. the disturbance 

signals) power. As can be seen from Fig. 5, a projection order of 10N  can produce a 

significantly improved convergence performance over a projection order of 1N  (the 1N  case 

is a normalized stochastic gradient descent algorithm, or NLMS). It could also be argued that 5N  

is sufficient to obtain a significantly improved performance, at a lower cost than 10N .  Figure 6 

compares the performance of the MFXGS-FAP algorithm for projection order 10N  with the 

multichannel modified filtered-x LMS and RLS algorithms. As expected, the convergence 

performance of the MFXGS-FAP algorithm is found between the convergence performance of the 

LMS-based  algorithm and the RLS-based algorithm. The convergence speed gain of the MFXGS-

FAP over the multichannel modified filtered-x LMS is considerable. 
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Some simulations were performed to evaluate the impact of reducing the update rate of  nP  in the 

MFXGS-FAP algorithm.  It was found that for both the scalar version and the block version of the 

MFXGS-FAP, update periods up to p=25 could be used without having any significant effect on the 

convergence curves. If update periods of more than p =25 were used, then some signs of instability 

started to show in the convergence curves. Therefore, the value p=20 used in Table 3 for the 

complexity of the MFXGS-FAP algorithm is a realistic one, and the complexity of the algorithm can 

be significantly reduced over the case where p=1.  

 

Another aspect which was addressed by the floating point simulations (Matlab and C) was the 

numerical stability of the fast affine projection algorithms. The MFXFAP-RLS was initially found to 

be stable in double precision floating point format and unstable after 50000 iterations of convergence 

in single precision format. However, as reported in [12], a simple trick to improve the numerical 

robustness of the MFXFAP-RLS is to force the symmetry of the two inverse correlation matrices in 

the built-in sliding window recursive least-squares algorithm. With this simple modification, the 

MFXFAP-RLS proved to be experimentally as numerically robust as the MFXGS-FAP algorithm 

(no divergence, even with the single precision format and high affine projection orders). Still, it is 

expected that because the MFXGS-FAP algorithm avoids the recurrent process of computing the 

inverse of the  nR  matrix, it will prove to be more stable than the MFXFAP-RLS algorithm in 

most numerical environments (with typically less precision than 32 bits floating point). And since the 

MFXGS-FAP has a lower complexity and a nearly identical convergence performance to the 

MFXFAP-RLS, its use should be preferred for most systems.  

 

The last column of Table 3 compute a performance/cost ratio, obtained from the attenuation 

achieved by the different algorithms after 50,000 iterations (averaged over the last 5000 iterations), 

divided by the number of multiplies per iteration required by each algorithm. The last column of 
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Table 3 does not consider the numerical stability of the different algorithms. It uses the fact that 

except for numerical effects all the RLS-based algorithms of Table 3 produce the same 

convergence performance and all the AP/FAP-based algorithms of Table 3 also produce the same 

convergence performance. It can be shown that the proposed MFXGS-FAP provides the best 

performance/cost ratio, first for 5N  and then for 10N . Using an update rate of 20p  

further improves the performance/cost ratio, since it can produce the same performance at a lower 

cost. The next best algorithms in terms of performance/cost ratio are the MFXFAP-RLS algorithm 

and the multichannel filtered-x LMS algorithm. The multichannel filtered-x fast transversal filter 

(FTF) algorithm has the next best performance/cost ratio, however it is usually numerically unstable. 

All the other algorithms (RLS-based or AP-based) have performance/cost ratios 10 to 100 times 

weaker than the proposed MFXGS-FAP algorithms. 

 

As in [12], simulations with noisy acoustic plant models ( “h model” in Figs. 1 and 2) were also 

performed to compare the robustness of the different algorithms to plant models inaccuracy. It 

should be noted here that the term "noisy" is used to describe a limited accuracy of the plant model, 

and not to describe time variations of the plant. So far ideal plant models had been assumed. The 

noise added to the ideal plant models was added on a frequency by frequency basis, where a 

random complex value with a magnitude of 20 dB or 10 dB less that the original magnitude was 

added to each frequency in the frequency response. Figure 7 first shows the performance when 

plant models with a 20 dB SNR were used. In this case the performance of all algorithms was 

similar to the case when ideal plant models were used (Fig. 6), except for the initial convergence of 

the multichannel modified filtered-x RLS algorithm which becomes slower. However, when 10 dB 

SNR models were used, the multichannel modified filtered-x RLS required a much smaller step size 

u  in order to converge, which greatly slowed down its convergence speed. In this case the 

MFXGS-FAP algorithm greatly outperformed the multichannel modified filtered-x RLS, on top of 

also having a much lower computational load. This is shown in Fig. 8. Since in practice it may not 
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always be possible to have plant models that are very accurate, the fact that the MFXGS-FAP 

seems more robust to plant model noise is another reason to consider this algorithm for practical 

implementations. Simulations were also run using synthetic transfer functions (order 6 or 8 ARMA 

models) instead of the experimentally measured acoustic ones, and similar convergence results 

were obtained for noisy plant models (i.e. strong sensibility to plant model noise for RLS-based 

algorithms and better performance for the MFXGS-FAP algorithm).  

 

Considering that the MFXGS-FAP algorithm can provide a good improvement of the convergence 

speed over the multichannel modified filtered-x LMS algorithm, with an increase of the 

computational complexity acceptable for many practical systems (i.e. the best performance/cost 

ratio as shown in Table 3), and considering that in the case of noisy plant models fast affine 

projection algorithms can even outperform the more complex algorithms based on recursive least-

squares, the MFXGS-FAP is therefore an attractive algorithm for practical real-time 

implementations. This is particularly true since the multichannel recursive least-squares algorithms 

for ANC listed in Table 3 either have a much higher computational load, or have serious numerical 

instability problems [7],[9].  

 

5. CONCLUSION 

 

The multichannel MFXGS-FAP algorithm was introduced as a good alternative for practical active 

noise control systems using FIR adaptive filtering. Two versions of the MFXGS-FAP algorithm 

were presented (scalar and block), and the possibility of updating the inverse correlation matrix at a 

reduced rate was described and tested. The performance of the MFXGS-FAP algorithm is 

significantly better than multichannel LMS algorithms for ANC, with an increase of the complexity 

which can be acceptable for many applications. The MFXGS-FAP provides the best 



 

  Martin Bouchard and Felix Albu 

21 

performance/cost ratio. In the cases where noisy plant models are used in ANC systems, the 

performance of fast affine projection algorithms can be even better than the more complex RLS-

based algorithms.  
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Fig. 1 (Bouchard) 
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Fig. 2 (Bouchard) 

 

-50

-30

-10

10

30

0.0 0.1 0.2 0.3 0.4 0.5

Normalized frequency

Magnitude (dB)

-50

-30

-10

10

30

0.0 0.1 0.2 0.3 0.4 0.5

Normalized frequency

Magnitude (dB)

-50

-30

-10

10

30

0.0 0.1 0.2 0.3 0.4 0.5

Normalized frequency

Magnitude (dB)

-50

-30

-10

10

30

0.0 0.1 0.2 0.3 0.4 0.5

Normalized frequency

Magnitude (dB)

-50

-30

-10

10

30

0.0 0.1 0.2 0.3 0.4 0.5

Normalized frequency

Magnitude (dB)

-50

-30

-10

10

30

0.0 0.1 0.2 0.3 0.4 0.5

Normalized frequency

Magnitude (dB)

 
 

Fig. 3 (Bouchard) 
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Fig. 4 (Bouchard) 
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Fig. 5 (Bouchard) 
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Fig. 6 (Bouchard) 
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Fig. 7 (Bouchard) 
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FIGURE CAPTIONS 

 

Figure 1: A delay compensated modified filtered-x structure for active noise control 

 

Figure 2: A delay compensated modified filtered-x structure for sound reproduction systems 

 

Figure 3: Frequency responses of the six secondary paths used in the simulations. 

 

Figure 4: Block diagram of the simulated active noise control system. 

 

Figure 5: Convergence curves for the MFXGS-FAP, with different affine projection orders ( 1N , 

5N , 10N  and 100N ). 

 

Figure 6: Convergence curves for the MFXGS-FAP algorithm and multichannel delay-compensated 

modified filtered-x LMS and RLS algorithms, with ideal plant models. 

 

Figure 7: Convergence curves for the MFXGS-FAP algorithm and multichannel delay-compensated 

modified filtered-x LMS and RLS algorithms, with 20 dB SNR plant models.  

 

Figure 8: Convergence curves for the MFXGS-FAP algorithm and multichannel delay-compensated 

modified filtered-x LMS and RLS algorithms, with 10 dB SNR plant models.  
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TABLES 

 

inv_vector(K+1:K*N)=inv_vector(1:K*(N-1)); 

inv_vector(1:K)=1./diag( R(1:K,1:K) ); 

for k=1:1:K 

    for i=1:N*K 

          tmp=0; 

          for j=1:N*K 

              if j~=i 

                  tmp = tmp -R(i,j) * P(j,k); 

              end 

          end 

           P(i,k)=(b(i,k)+ tmp)*inv_vector(i);    

     end 

end 

 

Table 1 (Bouchard) 
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Table 2 (Bouchard) 
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Multichannel algorithm for 

ANC/sound reproduction (all 

using the modified filtered-x 

structure) 

Multiplies per 

iteration for I=1, 

J=1, K=1, 

L=100, M=64 

Multiplies per 

iteration for I=1, 

J=3, K=2, 

L=100, M=64 

Performance/cost ratio (after 

50000 iterations, for I=1, J=3, 

K=2, L=100, M=64, ideal 

plant models) 

Proposed GS-FAP (scalar 

version), 10N  

604  for  p=1 

509 for  p=20 

3,776 for  p=1 

3,016 for  p=20 

-5.7E-03 dB/multiply 

-7.1E-03 dB/multiply 

Proposed GS-FAP (scalar 

version), 5N  

489  for  p=1 

465 for  p=20 

2,796  for  p=1 

2,606 for  p=20 

-7.4E-03 dB/multiply 

-8.0E-03 dB/multiply 

FAP-RLS, 10N [12] 943 8,505 -2.5E-03 dB/multiply 

FAP-RLS, 5N [12] 583 4,165 -5.0E-03 dB/multiply 

affine projection, 10N [12] 12,838 137,488 -1.6E-04 dB/multiply 

affine projection, 5N [12] 3,821 37,678 -5.5E-04 dB/multiply 

least-mean-squares (LMS) [7] 428 2,268 -4.5E-03 dB/multiply 

fast-transversal-filter (FTF) [7] 1,226 16,007 -1.9E-03 dB/multiply 

QRD-LSL, time-domain 

coefficients updated every 100 

iterations [9] 

4,752 54,616 -5.7E-04 dB/multiply 

symmetry-preserving RLS [9] 20,729 320,122 -9.7E-05 dB/multiply 

inverse QR-RLS [9] 31,628 510,019 -6.1E-05 dB/multiply 

 

Table 3 (Bouchard) 

 

TABLE CAPTIONS 

 

Table 1: Matlab
TM 

code for a single iteration of the Gauss-Seidel algorithm to compute  nP  from  nR , 

from b , and from an internal variable inv_vector, shown here for the scalar version of the MFXGS-

FAP. The internal variable inv_vector is of size 1KN  and it is initialized with zero values. 

 

Table 2: Complexity breakdown of the proposed MFXGS-FAP algorithm, estimated by the number of 

multiplies per iteration. 

 

Table 3: Comparison of the computational load of the MFXGS-FAP algorithm with other multichannel 

delay-compensated modified filtered-x algorithms for ANC, and evaluation of a performance/cost ratio. 

 

 
The matlab code for the proposed algorithm can be obtained from http://falbu.50webs.com/gs.html 
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