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Abstract 

A new multichannel filtered-x recursive least square algorithm for active noise control 
systems is proposed. It is shown that the use of the filtered-x structure, instead of the 
commonly used modified filtered-x structure lead to a more efficient implementation and 
similar convergence performance and stability. The paper is also focused on examining the 
benefits of auxiliary normal equations solving methods needed by the formulation of the RLS 
problem. The behavior of the proposed algorithm is investigated in cases of ideal and non-
ideal acoustic plants. 
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1 Introduction 

During last years many adaptive algorithms have been proposed for multichannel active 
noise control (ANC) applications. In ANC systems, an adaptive controller is used to optimally 
cancel unwanted acoustic noise [1], [2].  
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Fig. 1. Block diagram of the filtered-x structure for active noise control. 



INTERNOISE 2010 │ JUNE 13-16 │ LISBON │ PORTUGAL 

2 

   Primary field d 

Adaptive 
filter copy 

  w 

Plant 
h 

Plant 

model  
ĥ
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Fig. 2. Block diagram of the delay compensated (or modified filtered-x) structure for active 

noise control. 

 
The filtered-x (Fig. 1) and modified filtered-x (Fig. 2) are commonly used structures for active 
noise control systems [3-11]. Multichannel versions of the filtered-x least-mean-square (FX-
LMS) and modified FX-LMS (MFX-LMS) algorithms are the benchmarks to which most 
adaptive filtering algorithms are compared, because they are widely used [1-4]. 
      Affine projection (AP) adaptive algorithms and its numerous fast versions are also known 
to be efficient when using in ANC systems (e.g., see [4-8] and references therein). However, 
they possess a slower convergence compared to RLS algorithms.  
It is well known that recursive-least-squares (RLS) algorithms have much faster convergence 
than previously mentioned algorithms, but they are too complex and often numerically 
unstable (e.g., see [9-12] and references therein). Extensions of stable realizations of RLS 
algorithms such as the inverse QR-RLS, the QR decomposition least-squares-lattice (QRD-
LSL) algorithms for specific ANC systems were presented in [10]. However, they are too 
complex for practical implementations. In [13] a new formulation of the RLS problem in terms 
of a sequence of auxiliary normal equations with respect to increments of the filter weights 
has been proposed. This approach was applied to the exponentially weighted RLS algorithm 
and a new structure of the transversal exponential RLS algorithm was derived [13].  
In this paper, we adapt the structure of the transversal exponential RLS algorithm for the 
multichannel filtered-x structure and derive a novel efficient algorithm called the filtered-x 
Gauss-Seidel exponential recursive least squares (FX-GS-ERLS) algorithm. We compare it 
with the modified filtered-x version called MFX-GS-ERLS algorithm [14]. These algorithms 
are introduced in Section 2. The computational complexity of the proposed algorithm is 
evaluated and compared with the complexity of other algorithms in Section 3. Simulation 
results are presented in Section 4. Section 5 concludes this work. 

2 A new exponential recursive least square algorithm for ANC 

In order to describe the algorithms most of notations and definitions from [5] are used. The 
variable n refers to the discrete time, I is the number of reference sensors, J represents the 
number of actuators, K is the number of error sensors, L is the length of adaptive FIR filters, 
M is the length of fixed FIR filters modeling the plant.  

The vectors    ,..., 1
T

i i ix n x n L    x  and     Tiii Mnxnx 1,...,' x consist of the last L and 

M samples of the reference signal  ix n , respectively.  The vector     Tjjj Mnyny 1,..., y  

consists of the last M samples of the actuator signal  ny j . The samples of the filtered 

reference signal  nkji ,,  are collected in the KIJ  , and KIJL   matrices 
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vectors         ndndndn K
ˆ,...,ˆ,ˆˆ

21d  and         nenenen K
ˆ,...,ˆ,ˆˆ

21e  consist of estimates  nd k
ˆ  of 

the primary sound field  nd k  and of alternative error signal samples  nek
ˆ , both computed in 

delay-compensated modified filtered-x structures. For the filtered-x structure, the 

multichannel error vector is         nenenen K,...,, 21e . The vectors  TMkjkjkj hh ,,1,,, ,...,h consist 

of taps mkjh ,,  of the fixed FIR filter modelling the plant between signals  ny j  and  nek . The 

1IJL  vector             nwnwnwnwn LJILJI ,,,1,11,,1,1,1 ... ... ...w  consists of the coefficients from all 

the adaptive FIR filters linking the signals  nxi  and  ny j  [5]. )(nR  is a IJLIJL   auto-

correlation matrix initialized as an identity matrix multiplied by a  regularization factor  . It is 

updated as  
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R , where )(nR  is the top left )1()1(  LIJLIJ elements of 

)(nR , )(nr  is a matrix of size IJLIJ  )1( , initialized with zero values and )(nr  is a IJIJ   

matrix, also initialized with zero values.  nek  is the kth error sensor signal,   is the 

forgetting factor, and   is a gain scalar. Finally, )(na ,  nC  and  nw  are initially null 1IJL  

vectors used in solving the auxiliary equations.  
In the context of ANC systems, a multichannel feedforward system using an adaptive FIR 
filter with a filtered-x structure and with filter weights adapted with the ERLS algorithm can be 
described by the following equations: 
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(solved with one GS  iteration)                                                  
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The gain scalar   is introduced in order to reduce the modifications of  nw  if there is a large 

delay in the plant. The matrices )(nr  and )(nr  obtained in equations (4) and (5), respectively, 

allow the efficient update (7) of the matrix )(nR . This update exploits the time-shift structure 

of the input data. The simulations have shown that one Gauss-Seidel iteration using  1nw  

as an initial approximation in solving the Eq. 8 is approximating well the solution using the 

ideal inverse matrix. The consequence is that      nnn T
eVa 1  and      nnn T

eVC    [12]. 

Therefore, Eq. 6 can be replaced by 
 

     nnn T
eVC                                                                                          (6’) 

 
and only  nw  is needed from the Gauss-Seidel method. This leads to a reduced numerical 

complexity with insignificant influence on the performance of the algorithm.   

 
Fig. 3. The norm of the difference between the Gauss-Seidel computed  nw  vectors when 

the  nC  vector is obtained using Eq. (6) and Eq. (6’) respectively. 

 
Fig. 3 shows the norm of the difference between the Gauss-Seidel computed  nw  vectors 

when the  nC  vector is obtained using Eq. (6) and Eq. (6’) respectively. It can be seen that 

this difference is very small and justify the approximation used in deriving the FX-GS-ERLS 
algorithm. This difference is initially higher at beginning and becoming much smaller after the 
algorithm convergence. Similar behavior is observed for both FX and MFX structures.  
Therefore the proposed FX-GS-ERLS algorithm is described by the equations (1)-(5), (6’), 
(7)-(9).  

The modified filtered-x GS-ERLS algorithm has the following three different equations 
for estimates of the primary sound field computed in delay-compensated modified filtered-x 
structure (Eq. 3a), the alternative error signal (Eq. 3b), and  nC  (Eq. 6a): 
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)()()(ˆ)(ˆ nnnn TTT
wVde                                                                                                     (3b) 

 

       nnnn T
eVaC ˆ1                                                                                                  (6a) 

 
Similar numerical complexity approach as above is validated by the simulation results. 
Therefore, the Eq. (6a) can be replaced by Eq. (6’) and only  nw  is computed by the Gauss-

Seidel method. The multichannel modified filtered-x MFX-GS-ERLS algorithm [14] for active 
noise control can be described by the following equations (1)-(2), followed by (3a) and (3b), 
(4)-(5), (6’), (7)-(9). 

3 Computational complexity 

The numerical complexity of the considered algorithms is measured by the number of 
multiplications ( algorithmM ) per algorithm iteration. Matrix inversions were assumed to be 

performed with standard LU decomposition that requires  2/3XO  multiplications, where X  is 

the size of a square matrix [6]. We investigated the numerical complexity of the MFX-LMS 
[9], MFX-GS-ERLS, FX-GS-ERLS, and modified filtered-x fast transversal filter (MFX-RLS) 
[10] algorithms:  
 

  KIJLMLIJKM LMSFX                                                                                      (10) 

 
  KJKMIJLMLIJKM LMSMFX  2                                                                               (11)   

                          

 2FX GS ERLSM IJL IJL IJ IJK K IJKM                                                                      (12) 

 

 2 2 ( 1)MFX GS ERLSM IJL IJL IJ IJK K JKM I                                                           (13) 

 

   2 2 2 2 2 2 3 22 / 2 2 2FX RLSM L I J K I J K K K L IJK IJK IJ MIJK                            (14) 

 

     2 2 2 2 2 2 3 22 / 2 2 3MFX RLSM L I J K I J K K K L IJK IJK IJ M IJK JK               (15) 

 
Fig. 4 shows the ratio of the number of multiplications of FX-RLS and FX-GS-ERLS (i.e., 

/FX RLS FX GS ERLSM M   ) for different L values. It can be seen that the complexity reduction 

ratio is increasing for higher I, J, and K values.  However, the complexity reduction ratio 
increase is slowing with increased L values for fixed I, J and K values. Similar conclusions 
can be obtained for the MFX-GS-ERLS algorithm.  
Usually we have },,,{ NKJIL   in practical implementations and therefore, in terms of 

multiplications, both FX-GS-ERLS and MFX-GS-ERLS algorithms are less complex than the 
FX-RLS/MFX-RLS algorithms.  
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Fig. 4. The ratio of the multiplications of the FX-RLS and FX-GS-ERLS algorithms for a 

varying  L, of the multichannel case ( 64,2,3,1  MKJI ) and monochannel case 

( 64,1,1,1  MKJI ). 

 
The least complex is the MFX-LMS algorithm and then, in the order of increasing the 
complexity, we have the FX-GS-ERLS, MFX-GS-ERLS, FX-RLS and MFX-RLS algorithms. 
Table 1 shows the number of multiplications of the considered algorithms for both 

monochannel ( 1,1,1  KJI ) and multichannel case ( 2,3,1  KJI ). It can be seen that, 

in terms of multiplications, the complexity of the MFX-GS-ERLS and FX-GS-ERLS algorithms 
is significantly lower than that of the FX-RLS/MFX-RLS algorithm. For example, for the 
mono-channel case the reduction is about 65%, while it is about 80 % for the investigated 
parameters of the multichannel case. 
  

Table 1. Comparison of the computational load of the FX-GS-ERLS and MFX-GS-ERLS 
algorithms with other multichannel delay-compensated modified filtered-x algorithms for ANC 

Algorithm 
128,64  LM  

Multiplies per 
iteration 

1,1,1  KJI  

Multiplies per 
iteration 

2,3,1  KJI

 
FX-LMS  321 1538 

MFX-LMS  513 2690 
FX-GS-ERLS  17088 152832 

MFX-GS-ERLS  17280 153984 
FX-RLS 49858 742666 

MFX-RLS  50051 743818 

4 Simulation results 

The MFX-GS-ERLS and FX-GS-ERLS algorithms were simulated and their performance was 
compared to the previously published MFX-LMS and MFX-RLS algorithms. In our simulation, 

we used 9995.0,2,3,1  KJI  and the reference signal was a white noise with zero 

mean and variance one. The simulations are performed with acoustic transfer functions 
experimentally measured in a duct. The impulse responses used for the multichannel 
acoustic plant have 64 samples each ( 64M ), while the adaptive filters have 128 
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coefficients each ( 128L ). The regularization factor was 3102   for the ideal plant and 
410  for plant models with SNR of 10 dB. The step size   for the MFX-LMS algorithm was 

5102   and 610  for the FX-LMS algorithm. The performance of the algorithms was 
measured by 
 

 
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

k
k

k
k

ndE
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Fig. 5 shows the absolute value of the attenuation difference between the convergence 
curves obtained with the direct solution and the Gauss-Seidel iterative solution using one or 
d two GS iterations. As expected, increasing the number of GS iterations leads to a closer 
performance to that obtained by using the linear system with an exact method (Fig. 5). It can 
be seen that the FX-GS-ERLS algorithm using only one GS iteration has almost identical 
performance with the more complex FX-RLS algorithm. The performance of the FX-GS-ERLS 
algorithm with one GS iteration is slightly worse than that obtained using two GS iterations.  

 

Fig. 5. The absolute value of the attenuation difference between the convergence curves 
obtained with the direct solution and the Gauss-Seidel iterative solution (one and two GS 

iterations). 

One supplementary Gauss-Seidel iteration adds 222 LJI  more multiplications to the numerical 
complexity of the algorithms. This is an important complexity increase because },{ JIL   

and, therefore, one GS iteration leads to an excellent compromise between numerical 
complexity and convergence performance.  
Figure 6 compares the performance of the selected algorithms, with ideal plant models, for a 
multichannel system ( 2,3,1  KJI , 1 ). As shown in [3] a value of  =1 is an optimal 

value for the RLS algorithm, and the solution of the least-squares equations is computed at 
every iteration of the algorithm.  It can be seen from Fig. 6 that, in case of ideal plant models, 
the performance of the MFX-GS-ERLS algorithm is very close to that of the MFX-RLS 
algorithm. Also, as it is already known, it shows that the convergence of the MFX-GS-ERLS 
is better than that of the MFX-LMS algorithm. Fig. 7 shows that the performance of the FX-
GS-ERLS algorithm is very close to that of the FX-RLS algorithm or MFX-GS-ERLS algorithm 
(Fig. 6). Figures 8 and 9 shows the performance of the investigated algorithms when non-
ideal plant models with a 10 dB SNR are used. The noisy plant models with 10 dB SNR 
accuracy were obtained as in [9]. 
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Fig. 6. Convergence of multichannel delay-compensated modified filtered-x algorithms for 

ANC, with ideal plant models ( 128,2,3,1  LKJI , 64M ). 

 
Fig. 7. Convergence of multichannel filtered-x algorithms for ANC, with ideal plant models 

( 128,2,3,1  LKJI , 64M ). 

 

 
Fig. 8. Convergence curves of multichannel delay-compensated modified filtered-x 

algorithms for ANC, with 10 dB SNR plant models ( 128,2,3,1  LKJI , 64M ).   
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Fig. 9. Convergence curves of multichannel filtered-x algorithms for ANC, with 10 dB SNR 

plant models ( 128,2,3,1  LKJI , 64M ). 

The value of   has to be reduced to 0.1 for the MFX-RLS, FX-RLS, MFX-GS-ERLS and FX-

GS-ERLS algorithms in order to assure stability, at the price of reduced convergence speed. 
In this case, the behavior of the FX-GS-ERLS algorithm is better than that of the MFX-GS-
ERLS algorithm. Therefore, the FX-GS-ERLS algorithm is potentially more robust to 
inaccuracies of the plant model. However, despite its increased numerical complexity, it does 
not bring important convergence gain over the MFX or FX versions of the LMS algorithm.  

5 Conclusions 

The FX-GS-ERLS algorithm based on the Gauss-Seidel method is introduced for practical 
active noise control systems using FIR adaptive filtering. This algorithm and its MFX version 
were compared with the previously published MFX-RLS and FX-RLS algorithms. It was 
shown that the proposed algorithm has a considerably reduced numerical complexity in 
comparison with their RLS counterparts. Also, it is proved FX-GS-ERLS and MFX-GS-ERLS 
algorithms have similar convergence properties for ideal and noisy plants models. 
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