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ABSTRACT 

In this paper, we propose two new pseudo affine projection algorithms for multichannel active noise 

control (ANC) systems: one based on the Gauss-Seidel method and one based on dichotomous 

coordinate descent (DCD) iterations. It is shown that t he proposed algorithms typically  have a lower 

complexity than the previously published multichannel affine projection algorithms for ANC, with 

similar convergence properties and good numerical stability .  
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I. INTRODUCTION 

Active noise control (ANC) systems are being increasingly researched and developed [1]. In such 

systems, an adaptive controller is used to optimally cancel unwanted acoustic noise. The delay 

compensated modified filtered-x structure [2] for active noise control systems using FIR adaptive 

filtering is presented in Fig. 1. This figure shows a block-diagram of a monochannel implementation 

of feedforward active noise control. The system in Fig.1 is delay -compensated. Since the plant 

normally includes a propagation delay, there is typically  a delay for the effect of  changes in the 

adaptive FIR filter coefficients to become effective in the error sensor signals. The structure in Fig. 1 

eliminates this delay by computing an estimate of the primary field signal (which is unaffected by the 

changes to the adaptive FIR filter coefficients), and by computing an alternative error signal from this 

estimated primary field signal. The use of this structure will be assumed in the rest of this paper. In 

the field of adaptive filtering, it is well known that fast affine projection (FAP) algorithms present a 

good tradeoff between convergence speed and computational complexity. FAP algorithms suitable for 

active noise control were introduced in [3]-[5]. For ideal (not noisy) plant models, these algorithms 

typically  do not provide the same convergence speed as recursive least -squares (RLS) algorithms. 

However, they demonstrate a much improved convergence speed compared to stochastic gradient 

descent algorithms, without the high increase of the computational load or the numerical instability  

often found in RLS algorithms, especially  for multichannel systems [4]-[5]. It was also reported that 

in the realistic case of noisy plant models (i.e. for algorithms using filtered-x types of structures, 

which require the use of plant models), FAP algorithms can be more robust to plant model noise 

than more complex RLS algorithms, and they can improve algorithm convergence performance at a 

lower cost [4]-[5].  
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In this paper, two new adaptive algorithms are introduced, both based on the Pseudo Affine 

Projection (PAP) algorithm, which is derived from the original affine projection algorithm by 

applying the Levinson-Durbin recursion [6]. Replacing the Levinson-Durbin recursion with the 

Gauss-Seidel method [7], a simpler algorithm was recently derived in [8], called the Gauss-Seidel 

Pseudo Affine Projection (GSPAP) algorithm. For a similar convergence performance, the complexity  

of the GSPAP algorithm is typically  lower than that of the previous FAP schemes extended to 

multichannel ANC systems: the modified filtered-x FAP-RLS (MFX-FAP-RLS) algorithm in [4] and 

the modified filtered-x Gauss-Seidel Fast Affine Projection (MFX-GSFAP) algorithm in [5]. 

Therefore, in Section II, we propose an adaptation of the GSPAP algorithm to multichannel ANC 

systems, termed MFX-GSPAP algorithm, as preliminarily  published in [9]. This new algorithm 

presents a typically  reduced computational load, compared to both the MFX -GSFAP [5] and MFX-

FAP-RLS [4] algorithms, and a similar convergence performance. However, the MFX -GSPAP still 

requires at least one inverse matrix computation. This can be very complex for large matrices and 

prone to numerical instability . Therefore, in Section III, a new algorithm for multichannel ANC 

systems, termed modified filtered-x Dichotomous Coordinate Descent Pseudo Affine Projection 

(MFX-DCDPAP) algorithm, is proposed. It is based on the dichotomous coordinate descent method  

used for solving linear systems [10-11]. This method does not require any matrix inversion, while it 

also exhibits a convergence speed similar to the previously published MFX -GSFAP and MFX-FAP-

RLS algorithms. The computational complexity of the proposed algorithms is evaluated in Section 

IV. Results of simulations comparing the new proposed algorithms with previously published 

algorithms are presented in Section V. Section VI concludes this work. 

  



 

  Felix Albu 

5 

II. MULTICHANNEL MODIFIED FILTERED-X GAUSS SEIDEL PSEUDO AFFINE 

PROJECTION ALGORITHM  

In the context of ANC systems, a monochannel feedforward system using an adaptive FIR filter 

with a modified filtered-x structure as in Fig. 1 and with filter weights adapted with a classical affine 

projection (AP) algorithm [12] can be described by the following equations (1)-(5) [3]-[4]: 

)()()( nnny T
xw           (1) 

( ) ( )Tv n n h x           (2) 

)()()(ˆ nnend T
yh           (3) 

)()()(ˆ)(ˆ nnnn
T

N
T

N wAde          (4) 

  )(ˆ)()()()()1(
1

nnnnnn
T

N
TT

eIAAAww


       (5) 

The variable n  refers to the discrete time. The column vectors  TLnxnxn )1(,),()(  x  and 

 TMnxnxn )1(,),()(  x  consist of the last L  and M  samples of the reference sensor signal 

)(nx , respectively (refer to Fig. 1). L  represents the length of the adaptive FIR filter, whose 

coefficients are represented by the column vector  TL nwnwn )()()( 1 w ,  and M  is the length 

of the (fixed) FIR filter modeling the plant between signals )(ny  and )(ne , whose coefficients are 

described by the column vector  TMhh ,,1 h . The column vector 

 TMnynyn )1(,),()(  y  consists of the last M  samples of the actuator signal )(ny . )(ne  is 

the error sensor signal. The samples of the filtered reference signal )(nv  are collected in the column 

vector  TLnvnvn )1()()(  v  and the LN   matrix  TNnnn )1()()(  vvA  , where 

N  is the affine projection order [12]. The row vectors  )1(ˆ)(ˆ)(ˆ  NndndnN d  and 

 )1(ˆ)(ˆ)(ˆ  NnenenN e  consist of estimates )(ˆ nd of the primary sound field )(nd  and of 
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alternative error signal samples )(ˆ ne , both computed in delay -compensated modified filtered-x 

structures as in Fig.1. Finally ,  is a normalized convergence gain 10   , I  is an identity  matrix of 

size NN   and   is a regularization factor that may be used to help with eventual numerical 

instability .  

 

In the adaptive filtering literature, it is well known that when the input signal of an adaptive filter 

trained with an Affine Projection algorithm is a time series (such as )(nv , which is the actual input 

signal of the adaptive filter in ANC structures as in Fig. 1), then the redundancy found in the input 

signal or the data matrix )(nA  can be exploited, and this results in a family of algorithms called the 

Fast Affine Projection (FAP) algorithms [13]-[14]. For an adaptive FIR filter of L  coefficients, FAP 

algorithms include a set of N  linear equations to be solved (with typically  LN  ), and this set of 

equation is often solved by the use of a built -in recursive least-squares (RLS) algorithm [15] or some 

more efficient built-in fast-RLS algorithm [15] inside the FAP algorithm. In the context of ANC 

algorithms, a FAP algorithm with a built -in fast-RLS algorithm was first introduced for monochannel 

ANC systems in [3]. More recently, an AP algorithm and a FAP algorithm were introduced in [4] 

for the more general case of multichannel ANC. The FAP algorithm in [4] used a built-in RLS 

algorithm instead of a built-in fast-RLS algorithm as in [3], because the potential numerical instability  

of the fast-RLS algorithm proved to be even more of a concern in the multichannel case. Thus the 

FAP algorithm in [4] used the name FAP-RLS, or more precisely modified filtered-x FAP-RLS 

(MFX-FAP-RLS), since it also made use of the structure of Fig. 1.  

 

In recent years, other schemes have been investigated to replace the built -in RLS or fast-RLS 
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algorithms inside the FAP algorithm, in order to improve the numerical stability  of the algorithms 

and also possibly reduce the computational load. The Gauss-Seidel inversion scheme [7] is one of 

those schemes that were successfully  applied to the FAP algorithm [16], and the adaptation of that 

Gauss-Seidel FAP algorithm (GSFAP) to multichannel ANC systems was recently published in [5] 

as the MFX-GSFAP algorithm, producing a lower complexity and a better numerical stability  than 

the MFX-FAP-RLS, for the same convergence speed. As an attempt to further reduce the 

complexity, a Pseudo Affine Projection (PAP) algorithm was recently derived from the original AP 

algorithm by applying a Levinson-Durbin recursion [6]. Replacing the Levinson-Durbin recursion 

with the Gauss-Seidel method [7], a simpler algorithm was derived in [8], called the Gauss-Seidel 

Pseudo Affine Projection (GSPAP) algorithm. For a similar convergence performance, the complexity  

of the GSPAP algorithm is typically  lower than for the FAP-RLS and GSFAP algorithms, as will be 

shown later in this paper. This section will present the extension of the GSPAP algorithm to the case 

of multichannel ANC systems: the MFX-GSPAP algorithm.  

  

The derivation of the GSPAP algorithm in the context of monochannel ANC using the structure of 

Fig. 1 is first presented. Let's consider the linear prediction with order 1N  (prediction filter with 

coefficients if  11  Ni ) of the signal )(nv , based on the last L  samples of )(nv  and producing 

a residual prediction signal )(nu : 

)()( nnu T
Nvf         (6) 

with the column vectors  TNnvnvn )1(,),()(  Nv  and  TNff 11 ,,1  f . The coefficients 

if  could be computed from the last L  samples of )(nv  by solving the following Yule-Walker 
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equation [17]:  

   TT nnn 0,...0),()(  uvfR          (7) 

with  TLnununun )1(),1(),()(        u   and   )()( nnn T
AAR  .  Defining )(np  as 

)()()()(
,
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,

)()(

1
)( 11

nnnn
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nn
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T
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TT uv
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uvuvuv
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






  , the previous formula can be re-

arranged as: 

   Tnn 0,...0,1)(  pR           (8). 

One single iteration from the Gauss-Seidel scheme [7] can be used to compute )(np , using as an 

initial condition for )(np  the value of )1( np  from the previous iteration of the GSPAP algorithm. 

More details on the implementation of the Gauss-Seidel scheme are provided later in this section. 

With the knowledge of )(np , the prediction residual signal )(nu  can be computed by: 

  )()()()()()()()()()( 1 npnnnnnnnnnu
TTTTT  pvuvpvfvvf NNNN   (9) 

where )(np  is the first component of )(np  and )(1 np   is its inverse value. 

 

For the case with 1   (referred to in the literature as case without relaxation), the previous equation 

(5) for the AP algorithm can be re-written in terms of the prediction residual signal )(nu  instead of 

the original input signal )(nv [6], with the following simplified equation:  

  )(ˆ)()()()()1(
1

nennnnn


 vuuww
T

      (10) 

where )(ˆ ne  is computed as a subset of (4): 

)()()(ˆ)(ˆ nnndne T
wv          (11). 
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A more efficient implementation can be achieved by further re-arranging the equations. First, the 

direct computation of   )()( nnn T
AAR   should be avoided and it can be evaluated instead by 

considering the special structure of )(nR :   











)1()(

)()(

nn

nnr
n

T

Rr

r
R , with )(nR  defined as the top 

left )1()1(  NN values of )(nR . )(nr  and )(nr can then by computed by: 

)()()()()1()( LnvLnnvnnn NN  vvrr        (12) 

)()()()()1()( LnvLnvnvnvnrnr         (13) 

where )(nNv  corresponds to the last 1N  rows of )(nNv  (i.e. 

 TNnvnvn )1(,),1()(  Nv ). By introducing a scalar variable )(nm  computed as: 

)()()()()1()( LnvLnunvnunmnm         (14) 

then (10) can be re-written as: 

)(ˆ)(
)(

1
)()1( nen

nm
nn uww


 .       (15) 

Re-introducing a relaxation factor   ( 10   ) can reduce the error signal )(ˆ ne  in some situations, 

but since the resulting algorithm with the   relaxation factor has not been formally derived with  , 

then the result is called a Pseudo Affine Projection algorithm (PAP) instead of a FAP algorithm: 

)(ˆ)(
)(

1
)()1( nen

nm
nn uww





 .       (16). 

To summarize, the equations describing the GSPAP for monochannel ANC are given by  (1), (2), 

(3), (8) through a Gauss-Seidel iteration, (9), (11), (12), (13), (14) and (16).   

 

Those ten equations can be extended to the case of multichannel ANC systems, still using the 
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structure of Fig. 1 (i.e. delay -compensated modified filtered-x structure). This results in the 

multichannel modified filtered-x Gauss-Seidel Pseudo Affine Projection (MFX-GSPAP) algorithm 

described by the following equations: 





I

i
i

T
jij nnny

1
, )()()( xw       (17) 

)()( ,,, nnv i
T

kjkji xh        (18) 





J

j
j

T
kjk nnend

1
, )()()(ˆ yh       (19) 

)()()(ˆ)(ˆ nnnn TTT
wVde        (20) 

)()()()()1()( 000000 LnLnnnnn  VAVARR      (21)   

)()()()()1()( 000000 LnLnnnnn TT  VVVVRR      (22)   

CPR )()( nn     (to solve with Gauss-Seidel method)        

 (23) 

)()()()( 1
00 nnnn T  PPAU                                                  (24) 

)()()()()1()( 0000 LnLnnnnn TT  VUVUMM                     (25) 

)(ˆ)()()()1( 1 nnnnn T
eMUww

                       (26) 

where the following additional notations are defined : I  - number of reference sensors, J   - number 

of actuators, K  - number of error sensors, and the variables Ii ,...,1 , Jj ,...,1 , and Kk ,...,1   

refer to the different reference sensors, actuators, and error sensors, respectively. ( )nR  is now a 

KN KN  auto-correlation matrix, initialized as an identity  matrix multiplied by a regularization 
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factor 1 , 















)1()(

)()(
)(

0

00

nn

nn
n

T

RR

RR
R , where )(nR  is the top left ( 1) ( 1)K N K N   block of 

)(nR , while )(0 nR  and )(0 nR  are, respectively, ( 1)K N K   and K K  correlation matrices 

initialized with zeros. ( )nP  is an inverse KN K  correlation matrix, while ( )nP  is the top KK   

block of ( )nP . C  is a KN K  constant matrix whose elements are zeros, except for the top K K  

block set to an identity  matrix. The IJL K  matrix  TLnnn )1(,),()( 00  UUU   consists of 

decorrelated filtered reference signal matrices )(0 nU  of size IJ K . ( )nM  is a K K  inverse matrix 

initialized with an identity  matrix multiplied by a regularization factor 2 . The vectors 

 Tiii Lnxnx )1(,),(  x  and  TMnixnixi )1(,),('  x  consist of the last L  and M  

samples of the reference signal )(nxi , respectively. The vector  Tjjj Mnyny )1(,),(  y  

consists of the last M  samples of the actuator signal )(ny j . The samples of the filtered reference 

signal , , ( )i j kv n  are collected in the IJ K , IJL K  and IJKN   matrices 



















)()(

)()(

)(

,,1,,

,1,11,1,1

0

nvnv

nvnv

n

KJIJI

K







V ,  TTT Lnnn )1()()( 00  VVV  , and 

T
Nnnn





  )1()()(

000 VVA  , while the matrix )(0 nA  consists of the last ( 1)K N   rows of 

)(0 nA . The K1  vectors ˆ ( )nd = 1 2
ˆ ˆ ˆ( ),  ( ),   ( )Kd n d n d n 

  
 and ˆ( )ne = 1 2

ˆ ˆ ˆ( ),  ( ),   ( )Ke n e n e n 
 

 consist 

of estimates ˆ ( )kd n  of the primary sound field ( )kd n  and of alternative error signals samples ˆ ( )ke n , 

both computed in delay-compensated modified filtered-x structures, as mentioned earlier. The 1M   

vector  TMkjkjkj hh ,,1,,, ,,h  consists of taps mkjh ,,  of the (fixed) FIR filter modeling the plant 
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between signals ( )jy n  and ( )ke n . The 1IJL  vector 

( )nw =
, ,1,1,1 , ,1 1,1,( ) ... ( ) ( ) ( )

T

I J LI J Lw n w n w n w n    
    

 consists of the coefficients from all the 

adaptive FIR filters linking the signals ( )ix n  and ( )jy n  ( ji, ). Finally , ( )ke n  is the k
 th 

error sensor 

signal and  is again a normalized convergence gain, 0 1  .  

To determine ( )nP  needed in (24), equation (23) is solved using the Gauss-Seidel method [7] for 

each column of ( )nP  and C . To do this, equation (23) is transformed in K  independent equations, 

Kk ,,1 , where )(nkp  is the k th column of )(nP  and kc  is the k th column of C . Since the 

filter length L  is usually  significantly bigger than the affine projection order N , i.e. NL  , the 

correlation matrix )(nR  is slowly varying in time, as is the solution of the system (23). Therefore, 

assuming that we have already obtained an accurate estimate of the vector )1( nkp  for the time 

sample )1( n , the vector )1( nkp  can be used as an initial condition in the Gauss-Seidel method. 

This is equivalent to solving the system kk nn cpR )()(  with one GS iteration:  

 
 

          










 






jk

KN

ij

jijk

i

j

jiik

ii

ik nnnn
n

n )()()1()(
)(

1
)(

1

,

1

1

,

,

pRpRc
R

p    (27) 

where  
ikc  is the i th element of the vector kc ,  

ik n)(p  is the i th element of the vector )(nkp , 

 
ji

n
,

)(R  is the  ji, th element of the matrix )(nR , and KNi ,,1 .  In the reference [5], it was 

shown that one GS iteration per sample was enough for the MFX -GSPAP algorithm to achieve 

approximately  the same performance as that of the theoretically  more accurate MFX -FAP-RLS 

algorithm.  

Even though ( )nP  is computed recurrently by using Gauss-Seidel iterations, the MFX-GSPAP  



 

  Felix Albu 

13 

(and also the MFX-GSFAP in [5]) computes ( )nP  directly  from the correlation matrix ( )nR , unlike 

the MFX-FAP-RLS [4] or other RLS-based algorithms. Therefore, it has the potential for an 

inherently better numerical stability . Moreover, in the MFX-GSPAP and MFX-GSFAP algorithms, 

it may not be required to invert ( )nR  for each iteration of the algorithm (i.e. ( )nR  has to be always 

updated but its inverse does not necessarily  have to be computed for each iteration). This is not the 

case in the MFX-FAP-RLS or purely RLS-based algorithms, because the recurrent scheme for 

inverting ( )nR  cannot miss any update without having undesirable effects caused by discontinuities. 

For a proper initialization of the MFX-GSPAP algorithm, at the first iteration of the algorithm )(nv  

should be non-zero and ( 1) ( 1)v n v n L    (or ( 1) ( 1)v n v n N   ) should all be zero.  

 

The proposed MFX-GSPAP algorithm directly  computes the adaptive filter coefficients w  in 

(26), used for the filtering between the reference sensors and the actuators in (1). This is unlike the 

previously published FAP algorithms for active noise control [3]-[5], which instead compute what is 

referred to as "auxiliary coefficients". The direct computation of the vector w  can be useful for a few 

reasons. For example, the only computation that must absolutely be done in real time in ANC 

applications is the computation of the actuator values in (1). The other computations could possibly 

be done offline, at a reduced rate, using recorded blocks of data (at the cost of having reduced tracking 

capabilities). Also, the direct access to the time domain coefficients can be interesting because it 

provides more physical insights into the control system, for example to observe its causality  and the 

number of required coefficients, etc.  
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III. MULTICHANNEL MODIFIED FILTERED-X DICHOTOMOUS COORDINATE 

DESCENT PSEUDO AFFINE PROJECTION ALGORITHM  

The MFX-GSPAP algorithm introduced in the previous section provides both a direct estimation of 

the adaptive coefficients w  and a computation complexity typically  lower than the previous FAP 

algorithms for multichannel ANC [4]-[5]. However, the MFX-GSPAP algorithm still requires at 

least one inverse matrix computation. This can be very complex for large matrices and prone to 

numerical instability . Therefore, in this section, a second new pseudo affine projection algorithm 

called the modified filtered-x Dichotomous Coordinate Descent Pseudo A ffine Projection (MFX-

DCDPAP) algorithm is introduced. It uses the first seven equations (17)-(23) of the MFX-GSPAP 

algorithm.  However, for solving the linear system in (23), the DCD method [10 -11] is used; this 

multiplication-free and division-less procedure is presented below.  

Let a system of equations to be solved be kk nn cpR )()( . The DCD algorithm is based on a binary 

representation of elements of the solution vector with bM  bits within an amplitude range ,  H H   . 

The iterative approximation of the solution vector )(nkp  starts by updating the most significant bit 

of its elements and proceeds to less significant bits. If a bit update happens (such an iteration is called 

“successful”), the vector kc  is also updated. The complexity of the method is mainly due to updates 

of the vector kc , i.e. due to the “successful” iterations. The parameter updN , that represents the 

maximum number of “successful” iterations, limits the algorithm complexity. Denote )(nir  the i th 

column of the matrix )(nR . The DCD algorithm can be described as follows.  

Initialization: 0)( nkp , Hd  , 0q .  

for bMm :1   
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2/dd   

(a) 0flag  

for KNi :1  

if    
iiik nd
,

)()2/( Rc  , then 

1flag , 1 qq  

       dnn
ikikik  cpp sgn)()(  

   )(sgn nd iikkk rccc   

if updNq  , then the algorithm stops 

end of the i -loop 

if 1flag , then go to (a) 

end of the m -loop 

It can be seen from the algorithm description that if H  is a power of two, then only multiplications 

by factors of power of two are used; these can be replaced by bit shifts [10]. Thus, the DCD 

algorithm can be implemented without explicit multiplications and divisions (well known as 

potential sources of numerical instability). The peak complexity of the DCD algorithm for given bM  

and updN  is 

  
bupd MNKN 2  shift-accumulation (SACs) operations                             (28) 

To complete the MFX-DCDPAP algorithm, in addition to equations (17)-(23) and the DCD 

algorithm to solve the system (23), the modification proposed in [18] for the GSPAP algorithm is 

adapted to multichannel ANC systems. If the )(np estimate is exact and there is no regularization 

[18], the equation (10) with   included can be replaced by  



 

  Felix Albu 

16 

   

     
   ˆ ˆ( 1) ( ) ( ) ( ) ( )

T

T

T

n n
n n e n n n n e n

n n n
     

A p
w w w A p

p A v
    (29) 

Therefore, for the multichannel ANC systems the following computations are performed:  

0
ˆ ( ) ( ) ( ) Tn n nU A P                                                          

 (30) 

ˆ ˆ( 1) ( ) ( ) ( ) Tn n n n  w w U e          (31) 

where 
0 0

ˆ ˆ ˆ( ) ( ), , ( 1)  
T

n n n L   
 

U U U and therefore is updated in a similar way to  ( )nU . The 

remaining two equations of the MFX-DCDPAP algorithm are (30) and (31). The advantage of this 

new algorithm is that it avoids the matrix inverse, a known source of numerical instability . Also, it 

has a reduced complexity as will be shown in Section IV.  It will also be verified in section V that the 

modifications proposed for the MFX-DCDPAP do not alter significantly the convergence and 

steady-state properties of the MFX-DCDPAP algorithm, compared to the MFX -GSPAP algorithm 

when ideal plant models are used.    

Just like the MFX-GSPAP algorithm introduced in the previous section, the MFX -DCDPAP 

directly  computes the adaptive filter coefficients w  in (31), used for the filtering between the 

reference sensors and the actuators in (1). It thus presents the same advantages as the ones described 

at the end of Section II for the MFX-GSPAP algorithm.  

 

IV. COMPUTATIONAL COMPLEXITY 

The computational complexity of the algorithms considered was estimated by the number of 

multiplications required per iteration. Matrix inversions were assumed to be performed with standard 
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LU decomposition that requires  3 2O X  multiplications, where X  is the size of a square matrix. 

The number of multiplications per MFX-GSFAP algorithm iteration is [5]: 

2

3 2

(2 2( 1)( ) 1) (2 1)

( ( 1) ) /

IJK L M N K J K K N

J KM K N IL KN K N p

       

     
      

 (32) 

where p is the update period of the GS algorithm [5]. The number of multiplications per MFX-

GSPAP algorithm iteration is: 

2
3 21

( 2 3 2 1) ( )
2

N

p
IJK M L KN K IJL JKM K K                (33) 

The number of multiplications per MFX-DCDPAP algorithm iteration is: 

( 2 3 )  IJK M L KN IJL JKM             (34) 

It can be seen that the MFX-GSPAP algorithm has 
2

3 21
(2 1) ( )

2

N

p
IJK K K K     more multiplications per 

iteration than the MFX-DCDPAP algorithm. This increase of the numerical complexity is 

approximately proportional with 2K  and can be reduced by updating less frequently the GS part of 

the algorithm. For the MFX-GSPAP and MFX-GSFAP algorithms, updating less frequently the GS 

part produces a reduction of about 3 21p
K N

p


multiplications and therefore can be important, 

especially  for high values of K and N. The performance of those two algorithms is only slightly 

reduced when the update of the solution for the linear system in (23) is not done at the sample rate 

[5], [9]. If a proper regularization factor is used, a value of p up to 10p   can be used safely for 

updating the solution of (23), without having signs of instability  and with an average loss of less 

than 1 dB in convergence. Updating less frequently the solution of (23) in the MFX -DCDPAP 



 

  Felix Albu 

18 

algorithm doesn’t change its complexity given by (34) in terms of multiplications, since this part is 

computed only with additions and shift operations.   

Table 1 evaluates the complexity of the two new introduced PAP algorithms, compared with 

previously published LMS and FAP based algorithms for multichannel ANC systems [4], [5], [19]. 

The values between accolades correspond to 10p  . It can be seen that all the affine projection 

derived algorithms are only slightly more complex than the benchmark MFX -LMS algorithm. For the 

chosen parameters (I, J, K, L, M, N) the complexity of the MFX-DCDPAP algorithm is lower than 

that of the MFX-GSPAP algorithm updated at the sample rate, both of them being less complex than 

the MFX-GSFAP algorithm. This is the typical situation in most cases, but for some particular 

parameter values, especially  for low projection orders N and high updating factors p, the MFX-

GSFAP algorithm can be slightly less complex than the MFX -GSPAP algorithm. If I, J, K, L, M 

have fixed values, only the MFX-DCDPAP algorithm complexity is proportional with N, while the 

complexities of the MFX-GSPAP and MFX-GSFAP algorithms are proportional with 2N . It can be 

seen from Fig. 2 that the MFX-DCDPAP algorithm is the most efficient, particularly for high values 

of the projection order N. Similar conclusions can be obtained if I, J, L, M, N are fixed and K is 

variable.      

The last two columns of Table 1 give a performance/cost ratio obtained from the attenuation 

achieved by the algorithms after 50,000 iterations (averaged over the last 5000 iterations) for ideal 

and noisy plant models, divided by the number of multiplications per iteration. It can be seen that 

the proposed MFX-DCDPAP and MFX-GSPAP algorithms provide the best performance/cost 

ratio for the considered ANC system parameters. It can also be seen from Table 1 that the 

performance/cost ratios decrease when noisy plant models are used, although the two new proposed 
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algorithms still produce the best performance.   

 

V. SIMULATIONS 

The new MFX-GSPAP and MFX-DCDPAP algorithms were simulated and compared to the 

previously published multichannel modified filtered-x LMS algorithm (MFX-LMS, [19]) and the 

multichannel modified filtered-x GS-FAP algorithm (MFX-GSFAP, [5]). We used in our 

simulation 1,  3,  2I J K   and the reference signal was a white noise with zero mean and variance 

one. The simulations were performed with acoustic transfer functions experimentally  measured in a 

duct. The impulse responses used for the multichannel acoustic plant had 64 samples each ( 64M  ), 

while the adaptive filters had 100 coefficients each ( 100L  ). For all the affine projection algorithms, 

a value of 0.9 was used for the step size   and the regularization factors were 3

2 2 10      for the 

ideal case (clean plant models) and 4 3

210 , =2 10     for plant models with a signal to noise (SNR) 

ratio of 10 dB. The step size   for the MFX-LMS algorithm was 52 10  and the parameter H  of the 

DCD algorithm was set to 1/128. The convergence performances have been averaged over 200 

simulations. The performance of the algorithms was measured by  

 
 

 

2

10 2
10 log

k

k

k

k

E e n

Attenuation dB
E d n

  
 

  




        (35) 

It was found by simulations that a projection order of size 5N   was sufficient for (fast or pseudo) 

affine projection algorithms to get a significantly improved convergence performance over the LMS 

algorithm. Fig. 3 shows that the implementation using 12 DCD iterations and 16 bits p rovides 

almost identical performance with the method using the ideal matrix inverse. In this case the 
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theoretical peak complexity of the DCD algorithm is 200 SACs. Also, it can be seen in the same 

figure, that if an average loss of about 1 dB is allowed, the number of bits can be reduced to 8 and the 

peak DCD complexity to 160 SACs. However, the average DCD complexity is around 60% of the 

theoretical peak complexity in both cases (125 and 90, respectively). The DCD part increases the 

number of additions, but has no divisions or multiplications. Therefore, 12updN  and 16bM   were 

used in the following simulations of the MFX -DCDPAP algorithm.  

Fig. 4 compares the performance of the selected algorithms, with ideal plant models, for a 

multichannel ANC system, obtained from Matlab™ implementations of the algorithms (double 

precision 64 bits floating point format). It can be seen that the MFX -GSPAP and MFX-DCDPAP 

algorithms have almost the same performance as the previously p ublished MFX-GSFAP algorithm. 

As expected, their convergence performance is also better than that of the LMS-based algorithm.  

Fig.5 shows the performance when plant models with a 10 dB SNR were used. In this case, noise 

was added on a frequency by frequency basis to the ideal plant models, i.e. in the frequency response 

a random complex value with a magnitude of 10 dB less that the original magnitude was added to 

each frequency. It can be seen from Fig. 5 that, when 10 dB SNR models were used, the MFX-

GSPAP algorithm outperformed the other algorithms. Therefore, the approximation used in deriving 

the MFX-DCDPAP algorithm reduces its robustness and performance with noisy plant models in 

comparison with that of the MFX-GSPAP algorithm.  

 

VI. CONCLUSION 

The multichannel MFX-GSPAP and MFX-DCDPAP algorithms were introduced for practical active 
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noise control systems using FIR adaptive filtering. Both algorithms provide a significant 

improvement of the convergence speed over the MFX-LMS algorithm, with a similar computational 

complexity. It was shown that the proposed algorithms provide an excellent performance/cost ratio 

and are good candidates for practical real-time implementations. The advantage of the MFX -

DCDPAP algorithm is its reduced numerical complexity, especially  for high projection orders. On 

the other hand, the MFX-GSPAP has shown a better performance when used with noisy plant 

models. 
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Fig. 3 (Albu) 
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Fig. 4 (Albu) 
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Fig. 5 (Albu) 

 

 

 

 

 

FIGURE CAPTIONS 

 

Fig.1. A delay compensated modified filtered-x structure for active noise control. 

Fig.2. The number of multiplications per algorithm iteration for the MFX -GSFAP, MFX-GSPAP and 

MFX-DCDPAP algorithms and for variable projection orders with two situations: a) 

1,  =1, 1,  100,  64,  1 I J K L M p     and b) 1,  =3, 2,  100,  64,  1I J K L M p     . 

Fig.3. The attenuation difference over 50,000 iterations between the convergence curves of the 

algorithm using the ideal matrix inverse and the algorithm using different numbers of DCD iterations 

and bits. 
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Fig.4. Convergence curves of multichannel delay -compensated modified filtered-x algorithms for ANC, 

with ideal plant models  

Fig.5. Convergence curves of multichannel delay -compensated modified filtered-x algorithms for 

adaptive noise control, with 10 dB SNR models. 

 

 

 

TABLES 

 

 

 

Algorithm for 

multichannel  

ANC systems, 

L=100, M=64, 

N=5  

Multiplications 

per iteration for 

I=1, J=1, K=1 

Multiplications 

per iteration for 

I=1, J=3, K=2 

Performance/cost 

ratio after 50000 

iterations, for I=1, 

J=3, K=2, L=100, 

M=64 and ideal 

plant models 

(dB/multiplication

) 

Performance/cost 

ratio after 50000 

iterations, for I=1, 

J=3, K=2, L=100, 

M=64, 10 dB SNR 

plant models 

(dB/multiplication) 

MFX-LMS [19] 428 2,268 -4.0E-03  -3.4E-03  

MFX-DCDPAP 443 2,448 -6.9E-03  -4.9E-03  

MFX-GSPAP 473 (451) 2,686 (2,506) -6.3E-03 (-6.6E-

03) 

-4.7E-03 (-4.9E-03) 

MFX-GSFAP 

[5] 

479 (457) 2,796 (2,616) -6.1E-03 (-6.3E-

03) 

-4.1E-03 (-4.2E-03) 
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Table 1 (Albu)  

 

 

TABLE CAPTIONS 

 

 

 

Table 1: Comparison of the computational load of the MFX -GSPAP and MFX-DCDPAP algorithms 

with other multichannel delay -compensated modified filtered-x algorithms for multichannel ANC 

systems, and evaluation of a performance/cost ratio for 1p   (the values between accolades corresponds 

to 10p  ). 

 

 

The codes for the proposed algorithms can be obtained from 

http://falbu.50webs.com/List_of_publications_anc.htm 
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