
Fixed Order Implementation of Kernel RLS-DCD
Adaptive Filters

Kiyoshi Nishikawa∗, Yoshiki Ogawa∗, Felix Albu†
∗Department of Information and Communication Systems, Tokyo Metropolitan University

E-mail: knishikawa@m.ieice.org Tel: +81-42-585-8423
† Valahia University of Targoviste, Targoviste, Romania

E-mail: felix.albu@gmail.com

Abstract—In this paper, we propose an efficient structure
of the kernel recursive least squares (KRLS) adaptive filters
for implementing with low and fixed amount of computational
complexity. The concept of kernel adaptive filters is derived by
applying the kernel method to the linear adaptive filters for
achieving the autonomous learning of non-linear environments.
It is expected to provide a better noise reduction performance in
non-linear environments than the conventional linear adaptive
filters. One of the problems of the kernel adaptive filters is
the required amount of calculation. Besides, they increase as
the adaptation time advances as opposed to the linear case.
In this paper, we propose an efficient implementation method
of the KRLS dichotomous coordinate descent (DCD) adaptive
algorithm. The proposed method enables us to implement at a
constant amount of computation by fixing the order of the filter
and the dictionary maintaining the fast rate of convergence of the
KRLS-DCD algorithm. The effectiveness of the proposed method
is confirmed by computer simulations.

I. Introduction

In this paper, we propose an kernel recursive least squares
(KRLS) dichotomous coordinate descent (DCD) adaptive al-
gorithm and its efficient implementation method.

So far, the linear adaptive filters are widely researched and
utilized in a lot of applications, such as acoustic echo canceler,
channel equalization, system identification[1], [2]. The least
mean square (LMS) and the recursive least squares (RLS)
algorithms are well known learning algorithms for linear
adaptive filters. It is known that they have complementary
characteristics, i.e., the LMS algorithm can be implemented
with lower computational cost, but the rate of convergence
is relatively slow, and on the other hand, the RLS algorithm
can achieve a faster rate of convergence, but at the expense
of computational cost. Many modified algorithms of these
algorithms are proposed so far. One of them is the RLS-
DCD algorithm[3]. The algorithm achieves almost same rate
of convergence as the RLS with comparative amount of
calculation with the LMS and its variant algorithms.

Recently, the concept of the kernel adaptive filters is pro-
posed by applying the kernel method to the linear adaptive
filters[4]. The kernel adaptive filters enable us the autonomous
learning of the non-linear systems. Several algorithms for ker-
nel adaptive filters are proposed so far, e.g., the kernel LMS[5],
kernel normalized LMS[6], kernel proportionate NLMS[7],
kernel RLS[8], etc. These algorithms have the similar charac-
teristics to the counterparts of the linear ones. The kernel RLS,

for example, provides a faster rate of convergence but requires
a larger amount of calculation compared with the kernel LMS
algorithm. The kernel algorithms store the past input signal
vectors for adaptation, and the stored vectors constitute a
dictionary for estimating the unknown environments.

A special feature of the kernel algorithms that does not
exists in the linear ones is that the order of the filter, and
the dictionary will increase as the adaptation time advances,
so that the required amount of calculation increases. The
feature makes it impractical to implement the kernel RLS
algorithm for on-line applications. To reduce the amount of
calculation, several sparsification methods of the input signal
are proposed[4], [6], [9]. Although we can decrease the rate
of increment of the dictionary order, there are no limit on the
maximum order. This may pose a problem in implementation
environments with restriction on memory sizes, for example.
Therefore, in [10], the method for fixing the order of dictionary
is proposed. By predefining the maximum allowable order, it
enables us to limit the amount of calculation required.

In this paper, we proposed an implementation method of the
kernel RLS-DCD algorithm with the fixed order dictionary. In
[11], we proposed the kernel RLS-DCD algorithm by applying
the kernel method to the RLS-DCD algorithm. We showed
that it can be implemented with O(M) calculations where M
shows the filter order, and at the same time, it maintains a
comparative rate of convergence as that of the kernel RLS.

For the kenerl RLS-DCD, it is not effective to directly apply
the method of [10] due to its criterion to select the element of
dictionary to delete to maintain the dictionary order. Therefore,
in this paper, we propose a new criterion suited for the kernel
RLS-DCD to select an element for deletion. We show that,
by using the proposed method, we can limit the maximum
amount of computation with slightly sacrificing the rate of
convergence. Through the computer simulations, we confirm
the effectiveness of the proposed method.

II. Preparation

In this section, we briefly review the linear RLS-DCD
algorithm[3], and kernel adaptive filters[4].

In the following, a matrix or a vector is indicated by bold
letters, e.g., R, or r; the index of a matrix or a vector by
lower letters as Ri, j or ri; and a column vector of a matrix by

superscript as R(p). The transpose of a matrix R is indicated
as RT , and variables at time n is expressed as R(n).

A. RLS-DCD algorithm

The recursive least squares (RLS) algorithm is one of the
standard algorithms for linear adaptive filters. The RLS algo-
rithm enables us to obtain the optimum filter which minimizes
the sum of least squares

∑
n e2(n) where e(n) is the error signal.

The optimum filter is obtained by solving the normal equations
which is defined as

R(n)w(n) = β(n) (1)

where w(n), R(n), and β(n) are the filter coefficients, the auto-
correlation matrix of the input signal of the filter, and the
cross-correlation vector between the input and the output of
the filter respectively. To directly obtain the optimum solution
wo, we must calculate the inverse of the matrix R. Instead,
the RLS algorithm uses the matrix inversion lemma to solve
the equation (1). Although the RLS enables us to obtain the
optimum solution without calculating the matrix inversion,
it requires O(M2) multiplications, where M show the filter
order, and which is a magnitude larger that that of LMS-
type algorithms. For reducing the computational load, several
methods have been proposed, and the RLS-DCD algorithm is
one of those methods.

We describe briefly the RLS-DCD algorithm. Let us express
the approximate solution at n−1 as ŵ(n−1). Then, we define
the residual vector at time n − 1 as

r(n − 1) = β(n − 1) − R(n − 1)ŵ(n − 1) (2)

and the following variables
∆R(n) = R(n) − R(n − 1)
∆β(n) = β(n) − β(n − 1)
∆w(n) = w(n) − ŵ(n − 1)

(3)

Using the equation (3), we rewrite the equation (1) as

R(n) [ŵ(n − 1) + ∆w(n)] = β(n) (4)

Then, we obtain the equation

R(n)∆w(n) = β(n) − R(n)ŵ(n − 1)
= β(n) − R(n − 1)ŵ(n − 1) − ∆R(n)ŵ(n − 1)
= r(n − 1) + ∆β(n) − ∆R(n)ŵ(n − 1). (5)

By introducing a new variable β0(n) defined as

β0(n) = r(n − 1) + ∆β(n) − ∆R(n)ŵ(n − 1) (6)

and substituting into (5), the auxiliary system of equations are
obtained as

R(n)∆w(n) = β0(n) (7)

By solving these equations, ∆w(n) could be obtained and ŵ(n),
an approximate solution of (1), is calculated by the equation

ŵ(n) = ŵ(n − 1) + ∆ŵ(n). (8)

In Alg.1, we show the algorithm for solving the normal
equations recursively. In that, Π is given by Π = ηIN where η
is a small value, and I is an identity matrix of size N × N.

Several algorithms can be used to solve the auxiliary equa-
tions (12). One of those algorithms is the dichotomous coor-
dinate descent (DCD) algorithm that enables us to implement
the RLS-type algorithm with the computation complexity of
O(M). The DCD algorithm is based on the binary expression
of the elements of the solution vector. The DCD iteratively
updates from the most significant bit of its elements and
proceeds to less significant bits. The parameters of the DCD
algorithm includes the number of bits Mb, the amplitude range
[−H,H], and the maximum number of successful iterations
Nu. We can control the amount of calculation by the value of
Nu, namely, by assigning a larger value to Nu, a smaller error
can be achieved, at the same time, the number of iteration, and
hence, the amount of calculation increases. In Alg. 2, we show
the DCD algorithm. In the following, we restrict ourselves to
use the DCD algorithm to solve the auxiliary normal equations
because of its lower computational requirement.

B. Kernel adaptive filters

Next, we briefly summarize the kernel adaptive filters. The
concept of kernel adaptive filter is derived by applying the
kernel method to the conventional linear adaptive filters.

To apply the kernel method, the input signal u is mapped
into a higher order characteristics space. We express this
mapping as ϕ(u). Then, we try to expand and approximate
the coefficient vector w(n) in terms of the ϕ(u) as w′(n):

w′(n) = α1ϕ(u0) + · · · + αnϕ(un−1) (18)

where αi, i = 0, . . . , n are the weights to be determined. Using

Algorithm 1 Procedure for Solving Recursively the Normal
Equations
1: Initialize: ŵ(−1) = 0, r(−1) = 0, R(−1) = Π
2: for n = 0, 1, 2, · · · do
3: 　 R(1)(n) = λR(1)(n − 1) + x(n)x(n)T (9)
4: 　 e(n) = d(n) − x(n)Tŵ(n − 1) (10)
5: 　 β0(n) = λr(n − 1) + e(n)x(n) (11)
6: 　 R(n)∆w(n) = β0(n)⇒ ∆ŵ(n), r(n) (12)
7: 　 ŵ(n) = ŵ(n − 1) + ∆ŵ(n) (13)
8: end for

Algorithm 2 DCD algorithm
1: Initialize: ∆ŵ = 0, r = β0, α = H/2, m = 1
2: for k = 1, · · · ,Nu do
3: p = arg max

n=1,··· ,N
|rn| (14)

4: while |rp| ≤ (α/2)Rp,p do
5: m = m + 1, α = α/2 (15)
6: if m > Mb then the algorithm stops
7: end while
8: ∆ŵp = ∆ŵp + sign(rp)α (16)
9: r = r − sign(rp)αR(p) (17)

10: end for

the kernel trick, the output signal y(n) is expressed as

y(n) = ϕ(xn)Tw′n
= ϕ(xn)T(α1ϕ(x1) + α2ϕ(x2) + · · · + αnϕ(xn−1))
= α1ϕ(xn)Tϕ(x1) + · · · + αnϕ(xn)Tϕ(xn−1)
= α1κ(xn, x1) + α2κ(xn, x2) + · · · + αnκ(xn, xn−1).(19)

where κ(·, ·) shows the kernel function. By defining the vector
h as

h = [κ(xn, x1), κ(xn, x2), · · · , κ(xn, xn−1)]T (20)

and substituting into (19), we have a simpler expression of
y(n)

y(n) = hTα. (21)

This equation can be interpreted as the input-output relation of
a filter α. Hence, in the kernel adaptive filtering, α contains the
filter coefficients to be adjusted and, for updating α, the linear
adaptive algorithms can be used with slight modifications[4].

C. Sparsification of the dictionary

For implementing the kernel adaptive filters, the past input
signal vectors x(n) are stored as a dictionary. As the time
advances, the number of stored vectors and the order of
the filter increase. Hence, the number of summation in (19)
increases as n. This is the feature that is not exists in the linear
adaptive filtering.

The increase of the filter order and the dictionary size results
in the increase of the required amount of calculation at each
time. Therefore, when we apply the kernel adaptive filter to
applications, we need a sparsification of the input signal in
order to maintain the affordable amount of computation. For
sparsifying the input signal, several methods are proposed so
far[4], [6], [9]. In this paper, we consider to use the one
proposed in [6] due to its simple structure.

The input signal vectors are stored in a matrix, or the
dictionary, of size L × M where M and L respectively show
the length of the adaptive filter w, and the number of signals
stored. In this paper, we call L as the order of the dictionary.

In the spasification method of [6], the input signal at time
n is compared with each element of h by the equation

max|h j(n)| j=1,··· ,m < µ0 (22)

where µ0 is the predefined threshold value. Only when this
relation holds, x(n) will be added to the dictionary.

D. Fixed order implementation

Even if the sparsification method of the input signal is used,
we cannot precisely estimate the required order of the dictio-
nary in advance. Besides, if the environments are changed
during the adaptation, a higher order shall be required. This
might be a problem when implementing the kernel adaptive
filters in the environments with a limited amount of memories
such as embedded hardware.

To avoid this problem, a method is proposed for fixing the
order of the filter and the dictionary for the kernel RLS[10].
In this method, the allowable maximum size of the dictionary

Lmax is set advance. When the order of the dictionary become
larger than Lmax, the criterion for deletion dis(Di) will be
calculated. Then, the vector, an element of the dictionary,
that gives the minimum dis(Di) will be deleted. In Fig. 1,
an example of the deletion of a vector is shown.

Dn-1

D1

DL

DL-1

Dn

Dn+1

L
max

Dn-1

D1

DL

DL-1

Dn+1

L
max

Fig. 1. Method for fixing the order of the dictionary. In this example, Dn is
deleted and inserting DL without changing the order of the dictionary.

In this method, the convergence characteristics of the adap-
tive filter will be affected by the selection of the maximum
order of the dictionary Lmax and the criterion for determining
the element for delete. Therefore, we must carefully select
them.

III. The ProposedMethod

Here, we propose the kernel adaptive filter based on the
RLS-DCD algorithm.

A. Order variation of the filter and the dictionary

As mentioned before, the order of the filter α, and also,
that of characteristic space will increase as the time advances.
Namely, the number of terms in the summation of (19)
increases as n. Therefore, we cannot directly apply the linear
RLS-DCD to the kernel adaptive filter.

In the proposed method, we extend the equation (9) of
Alg.1 which is the update equation of R(n) as (23). Hence,
the required amount of calculation for (9) is increased from
O(M) to O(L2).

R(n) = λ
[
R(n − 1) 0

0T 1

]
+ h(n)h(n)T (23)

Similarly, we propose to extend the equations (10), (11), and
(13) as

e(n) = d(n) − h(n)T
[
α(n − 1)

0

]
(24)

β0 = λ

[
r(n − 1)

0

]
+ e(n)h(n) (25)

α(n) =
[
α(n − 1)

0

]
+ ∆α(n) (26)

Note that the DCD algorithm shown in Alg.1 is independent
of other calculations. This implies that it is not affected by the
increment of the filter order, and hence, the algorithm can be
used without modification in the propose method.

Algorithm 3 Proposed kernel-RLS-DCD algorithm
1: Initialize: D(0) = {x(n)},α(0) = r(0) = 0,R(0) = Π
2: for n = 1, 2, 3, · · · do
3: h(n) = κ (x(n),D(n − 1)) (27)
4: if x(n) will be added to the dictionary then
5: D(n) = D(n − 1) ∪ {x(n)} (28)
6: h(n) =

[h(n)
1

]
(29)

7: R(n) = λ
[R(n − 1) 0

0 1

]
+ h(n)h(n)T (30)

8: e(n) = d(n) − h(n)T
[
α(n − 1)

0

]
(31)

9: β0(n) = λ
[r(n − 1)

0

]
+ e(n)h(n) (32)

10: (∆α(n), r(n)) = DCD(R(n),β0(n)) (33)

11: α(n) =
[
α(n − 1)

0

]
+ ∆α(n) (34)

12: else
13: D(n) = D(n − 1) (35)
14: R(n) = λR(n − 1) + h(n)h(n)T (36)
15: e(n) = d(n) − h(n)Tα(n − 1) (37)
16: β0(n) = λr(n − 1) + e(n)h(n) (38)
17: (∆α(n), r(n)) = DCD(R(n),β0(n)) (39)
18: α(n) = α(n − 1) + ∆α(n) (40)
19: end if
20: end for

B. Kernel-RLS-DCD algorithm[11][12]

We show the proposed algorithm for updating the adaptive
filter in Alg. 3. In this algorithm, x(n), d(n), e(n), h(n) and
D(n) are respectively the input, the desired, the error signals,
the mapped set of the input signal, and the dictionary. Also,
α(n) is the filter coefficient vector, and κ (·, ·) the kernel
function. λ, and µ0 are the forgetting factor and the threshold
value respectively. Note that DCD() indicates that the DCD
algorithm is used to solve the auxiliary normal equations.

C. Fixed order dictionary in the proposed method

Let us consider to apply the method for fixing the order
of the dictionary, which is described in Sec. II-D, to the
kernel RLS-DCD algorithm. In [10], the discarding criterion is
calculated from the relation between the diagonal terms of the
inverse of the Gram matrix and the filter coefficients. However,
the computational cost required to calculate the inverse of the
Gram matrix is very high and, in the RLS-DCD, the Gram
matrix is not used for updating the coefficients. Therefore, it
is not effective to calculate the inverse of the Gram matrix
for the single purpose of calculating the discarding criterion.
Instead, in this paper, we propose a new discarding criterion
suited for the kernel RLS-DCD algorithm.

First, we notice that from the equation (19), the output signal
yn of the filter is expressed as

yn =

L∑
i=1

αiκ(xn,Di). (41)

On the other hand, the output signal y̆n under the condition
that the k-th vector Dk is deleted from the dictiory is expressed
as

y̆n =

k−1∑
i=1

αiκ(xn,Di) +
L∑

i=k+1

αiκ(xn,Di). (42)

Hence, the difference of these signals show the error due to
the deletion of Dk and is given as

En,k = |yn − y̆n| = |αk | κ(xn,Dk). (43)

By averaging the errors for all the vectors stored in the
dictionary, we obtain

Ek =
1
L

∣∣∣E1,k, E2,k, . . . , EL,k

∣∣∣ . (44)

In this paper, we propose to select k which minimizes Ek.
As a result, the proposed procedure to fix the order of the

dictionary is shown in Alg. 4.

Algorithm 4 Updated algorithm of fixed order dictionary in
the proposed method
1: if L > Lmax then

2: k = arg min
1≤m≤L

1
L

L∑
i=1

|αm | κ(Di,Dm) (45)

3: D = D \ {Dk} (46)
4: Remove the kth row or column from h,α,R, r
5: end if

IV. Simulation Results

Here, we show some results of computer simulations using
the proposed method.

A. Comparison of the proposed and the conventional methods

First, we show the results of channel equalization of a multi-
path Rayleigh fading channel[4].

Conditions of the simulations are follows. The length of
signal was 1000, the number of path M is M = 5, the
maximum Doppler frequency was fD = 100 Hz, and the
sampling rate was set as Ts = 0.8 µs. The parameters for the
proposed algorithm were λ = 0.955, H = 1, Nu = 8, Mb = 16,
and µ0 = 0.8. We compared the proposed, the kernel NLMS,
and the kernel RLS algorithms. The Gaussian kernel was used
as the kernel function for all the algorithms, and the kernel
parameter a was set as a = −0.1. The order of dictionaries
was not fixed in this simulation.

We show the comparison of the mean squared errors (MSEs)
in Fig. 2. On the other hand, Fig. 3 shows the comparison of
execution time of simulation. From Fig. 2, we see that the
proposed method provides almost same convergence charac-
teristics and the excess errors with the kernel RLS algorithm,
and better performance than the kernel NLMS algorithm.
Besides, from Fig. 3, it is shown that the execution time
of the kernel RLS algorithm increases as the order of the
dictionaries increases, and on the other hand, the proposed
method maintains almost flat time as that of the kernel NLMS
algorithm.

B. Simulation with fixed order dictionary

Next, we consider the effect of fixed order implementation
on the convergence characteristics and on the excess MSE of
the kernel RLS DCD algorithm.

Here, we show the results of simulation of the forward
prediction of Mackey-Glass sequence[4].

0 200 400 600 800 1000
10

−2

10
−1

10
0

Iteration n

M
e

a
n

 S
q

u
a

re
 E

rr
o

r

Kernel−NLMS

Kernel−RLS

Kernel−RLS−DCD

0 200 400 600 800 1000
0

20

40

60

80

100

120

140

D
ic

ti
o

n
a

ry
 S

iz
e

Dictionary Size

Fig. 2. Comparison of the algorithms in terms of MSE for multi-path Rayleigh
channel equalization.

Mackey-Glass sequence is expressed by

dx(t)
dt
= −a0x(t) +

b0x(t − τ)
1 + x(t − τ)10 (47)

where the constants a0, b0, and τ were set as a0 = 0.1, b0 =

0.2, τ = 30. The length of the training signal was 1000 and the
ensemble average of 100 independent simulations are shown.
The number of taps for the adaptive filter was set as M = 7,
and xn = [xn, . . . , xn−6]T , yn = xn+1.

The parameters for the proposed kernel RLS-DCD were set
as λ = 0.995, H = 1, Nu = 8, Mb = 16, and µ0 = 0.9. We
compared the kernel RLS-DCD algorithm with and without
order fixing method. For order fixing method, the maximum
order of the dictionary was set as Lmax = 20, 40, and 60. The
Gaussian kernel with the kernel parameter a = −0.05 was used
as the kernel function for all algorithms.

The comparison of the MSE characteristics is shown in
Fig. 4. Also, in Fig. 5, we show the order of the dictionary
and the indexes of the patterns stored in the dictionary. Note
that, in these figures, fo-Kernel-RLS-DCD shows the kernel
RLS-DCD with the proposed fixed order dictionary. From
these figures, we can confirm that by decreasing the value
of Lmax the excess MSEs are slightly increasing. However,
when Lmax = 60, the excess MSE of the fixed order structure
is almost same as that of the non-fixed algorithm whose
dictionary order reached about 120 as shown in Fig. 5.

When we did not fix the dictionary order, the average order
at n = 1000 is about L = 120, so that the proposed method
enables us to reduce the order by half. Also, in Fig. 5, we
can confirm that the vectors in the dictionary will effectively
changed to maintain the MSE characteristics.

V. Conclusions
In this paper, we proposed a fixed order implementation

method of the kernel RLS-DCD algorithm. The proposed
method enables us to implement with a fixed order dictionary
to eliminate the variation of the required computation. Through
the computer simulations implementing the proposed method,

0 200 400 600 800 1000
0.5

1

1.5

2

2.5

3

3.5
x 10

−4

Iteration n

e
la

p
s
e

d
 T

im
e

 [
s
e

c
]

Kernel−NLMS

Kernel−RLS

Kernel−RLS−DCD

0 200 400 600 800 1000
0

20

40

60

80

100

120

140

D
ic

ti
o

n
a

ry
 S

iz
e

Dictionary Size

Fig. 3. Comparison of the algorithms in terms of execution time for multi-path
Rayleigh channel equalization.

0 200 400 600 800 1000
10

−3

10
−2

10
−1

10
0

Iteration n

M
e

a
n

 S
q

u
a

re
 E

rr
o

r

Kernel−RLS−DCD

fo−Kernel−RLS−DCD (Lmax = 20)

fo−Kernel−RLS−DCD (Lmax = 40)

fo−Kernel−RLS−DCD (Lmax = 60)

Fig. 4. Comparison of the algorithms in terms of MSE for Mackey-Glass time
series. The order of the dictionary was fixed.

we showed that the method maintains the fast rate of conver-
gence of the kernel RLS algorithm with less computational
complexity.

Acknowledgment

This work was partly supported by a grant of the Romanian
National Authority for Scientific Research, CNCS-UEFISCDI,
project number PN-II-ID-PCE-2011-3-0097

References

[1] A. H. Sayed, Fundamentals of Adaptive Filtering. John Wiley & Sons,
2003.

[2] A. H. Sayed, Adaptive Filters. John Wiley & Sons, 2008.
[3] Y. V. Zakharov, G. P. White, and J. Liu, “Low-Complexity RLS

Algorithms Using Dichotomous Coordinate Descent Iterations,” IEEE
Transactions on Signal Processing, vol. 56, pp. 3150–3161, July 2008.

[4] W. Liu, J. C. Principe, and S. Haykin, Kernel Adaptive Filtering. Wiley,
2010.

[5] W. Liu, P. P. Pokharel, and J. C. Principe, “The Kernel Least-Mean-
Square Algorithm,” IEEE Transactions on Signal Processing, vol. 56,
pp. 543–554, Feb. 2008.

0 200 400 600 800 1000
0

20

40

60

80

100

120

140

Iteration n

D
ic

ti
o

n
a

ry
 S

iz
e

Kernel−RLS−DCD

fo−Kernel−RLS−DCD (Lmax = 20)

fo−Kernel−RLS−DCD (Lmax = 40)

fo−Kernel−RLS−DCD (Lmax = 60)

Fig. 5. Variation of the order of dictionary, and the input signal stored in the
dictionary for Mackey-Glass time series simulation.

[6] C. Richard, J. C. M. Bermudez, and P. Honeine, “Online Prediction
of Time Series Data With Kernels,” IEEE Transactions on Signal
Processing, vol. 57, pp. 1058–1067, Mar. 2009.

[7] F. Albu and K. Nishikawa, “The Kernel Proportionate NLMS Algo-
rithm,” in Proc. EUSIPCO 2013, (Marrakech, Morocco), Sept. 2013.

[8] Y. Engel, S. Mannor, and R. Meir, “The Kernel Recursive Least-Squares
Algorithm,” IEEE Transactions on Signal Processing, vol. 52, pp. 2275–
2285, Aug. 2004.

[9] W. Liu, I. Park, and J. C. Principe, “An Information Theoretic Approach
of Designing Sparse Kernel Adaptive Filters.,” IEEE transactions on
neural networks, vol. 20, pp. 1950–61, Dec. 2009.

[10] S. Van Vaerenbergh, I. Santamaria, W. Liu, and J. Principe, “Fixed-
Budget Kernel Recursive Least-Squares,” in 2012 International Confer-
ence on Acoustics, Speech and Signal Processing, pp. 1882–1885, IEEE,
Mar. 2012.

[11] Y. Ogawa and K. Nishikawa, “A Kernel Adaptive Filter based on
ERLS-DCD Algorithm,” in Proc. of Intl Tech. Conf. Circuits Systems,
Computer, Communications 2011, (Gyeongju), pp. 1228–1231, June
2011.

[12] Y. Ogawa and K. Nishikawa, “A Study on Convergence Properties of
Kernel RLS-DEC Adaptive Filters (In Japanese),” in Proc. 27th Signal
Processing Symposium, (Okinawa), Nov. 2012.

