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Abstract—This paper describes new algorithms 

promoting sparsity in modified filtered-x algorithms for 
active noise control. The proposed algorithms are based 

on recent techniques incorporating approximations to the 
ℓ0-norm in the cost function used. An approximation to the 
affine projection algorithm leads to new zero-attracting 

and reweighted zero-attracting modified filtered-x pseudo 
affine projection algorithms. The results of simulations 

indicate that the proposed techniques demonstrate good 

performance and reduce numerical complexity compared 
to the original affine projection based algorithms. 

I. INTRODUCTION 

Active noise control (ANC) is a technique for removing noise 

from a system by subtracting the effect of a noise-generating 
plant from a signal [1]. ANC algorithms are based on classical 

adaptive algorithms, and take into account the additional 
electro-acoustic path between the filter output and measured 
error signal, known as the secondary path [2]. A common 

technique to account for this path is known as the filtered-x 
(FX) scheme, originally developed for least-mean square 
(LMS) algorithms [3] and since incorporated into other 

adaptive algorithms, including the affine projection (AP) 
algorithm [4]-[6]. The FX scheme eliminates potential 

algorithm instability caused by the additional delay in the 
secondary path [7], but it generally exhibits slow convergence 
speed [8]. The modified filtered-x (MFX) scheme was 

introduced in [9], and improves upon the convergence of FX 
algorithms by introducing additional filtering steps to 
approximate the instantaneous error signal.  

 
Recent developments in the field of compressive sensing have 

led to the introduction of sparsity-promoting penalties  in 
adaptive filtering algorithms [10]-[11], producing zero-
attracting (ZA) and reweighted zero-attracting (RZA) 

algorithms. These have been shown to provide faster 
convergence when the system in question has a degree of 
sparsity, which is often the case in the systems encountered in 

ANC. In [12], these sparsity constraints were incorporated 
into MFX algorithms and shown to improve performance for 

systems with a degree of sparsity. However, these algorithms 
suffer from high computational complexity. 
 

In this paper, two approximations are proposed that lead to 
significant complexity reduction in the zero-attracting and 

reweighted zero-attracting MFxAP algorithms of [12]. 

Experimental results demonstrate that the proposed 
algorithms do not exhibit significant performance loss for 

systems with a moderate degree of sparsity. In particular, 
there is almost no performance loss  when the step size is close 
to one, or in case of non-sparse echo paths.  

 
The rest of this paper is structured as follows. In Section II the 
sparsity-inducing modified filtered-x algorithms from [12] are 

presented. In Section III the proposed algorithms are 
developed with reference to the ZA-MFxAP and RZA-

MFxAP algorithms from which they derive. In Section IV, the 
results of simulation trials performed with these algorithms 
are presented and further directions of research are described. 

Section V presents the conclusions.  
 
Notation: Throughout this paper, uppercase boldface letters 

will be used to denote matrices, and lowercase boldface letters 

to denote vectors.  Sgn  is the signum function, I is an 

identity matrix of appropriate dimensions, and 
p

 denotes 

the pth norm of a vector. All vectors are column vectors. 

Following convention, the term ℓ0-norm and 
0

notation 

denotes the number of non-zero elements in a vector. 

II. SPARSITY-INDUCING FILTERED-X ALGORITHMS 

In broadband feedforward ANC, an error signal is used to 

update an adaptive filter such that its output can be 
‘subtracted’ from the acoustic signal at the listener through 
interference cancellation, reducing disturbing noise. However, 

the nature of an ANC system introduces a secondary path, 
comprising the transfer functions of each electro-acoustic 
component. It was shown in [7] that this path can be split into 

two parts, one estimated as part of the plant, and one 
occurring after the acoustic summing junction, denoted here 

by  ns . In FX algorithms, an estimate of the secondary path, 

 ˆ ns , is used to filter the input signal  x n , so that the 

algorithm input is the filtered signal  fx n . This accounts 

for the secondary path delay, but introduces strict limits on 

step size that negatively impact upon convergence speed [8]. 
The MFX algorithms improve the convergence speed by 

estimating the instantaneous error signal  ê n  [9].  



 
 

Fig. 1. Modified filtered-x AP structure [12] 

 
The MFxAP structure is illustrated in Fig. 1. It is well suited 

to ANC as it does not require that      1n n n d U w be 

available, where        [  1  ... ]n n n n L    U  is the 

regressor matrix,        [ , 1 ,... 1 ]Tn x n x n x n K     , K 

is the projection order and L is the filter length. Instead, the 

following condition is set:  

      ˆ 1fn n n d U w                   (1) 

We define the filtered regressor matrix as 

       [  1  ... ],f f f fn n n n L  U χ χ χ where  

       [ , 1 ,... 1 ] .T
f f f fn x n x n x n K   χ  Therefore, 

condition (1) states that the estimated output for the next 

iteration should equal the estimated desired signal for the 
current iteration. We 

have      ˆ fn n ny U w ,      ˆ H
f f

n n n e U U , and  

     
1

ˆH
f f

n n n


 
 
U U e  [12]. Therefore the MFxAP 

recursion is given by:  

        ˆ1
f

w n w n n n    U e    (2) 

where        
1

H H
ff f f

n n n n 


   
 

U U U U I  and   is 

the step size. 
Next, the sparsity-inducing filtered-x affine projection 

algorithms proposed in [12] are presented. These are obtained 
by incorporating the zero-attracting and reweighted zero-
attracting strategies considered in [10] into the modified 

filtered-x recursion (2). 

 

II.1. Zero-attracting MFxAP (ZA-MFxAP) algorithm 
The ZA-MFxAP incorporates a sparsity-inducing penalty to 
attract coefficients towards zero. Zero-attracting algorithms 

use an ℓ1-norm penalty as an approximation and the weight 
update recursion is [12]: 
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                 - sgn

f
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   U e

U U w

w

   (3) 

where    is known as the zero-attraction strength.  

 

II.2. Reweighted zero-attracting MFxAP (RZA-MFxAP) 
Algorithm 
 

The RZA-MFxAP algorithm uses a log-sum penalty in place 
of the ℓ1-norm, as this provides a closer approximation to the 
behavior of the ℓ0-norm. The RZA-MFxAP recursion is [12]:  
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where  
  
  

sgn

1 sgn

n
n

n




w
Ψ

w
. 

In this case the strength of the zero-attraction is controlled by 
'  where   is known as the shrinkage magnitude. 

III. THE PROPOSED ALGORITHMS 

 

We found by simulations that for all investigated sparseness 
levels, the usual step size values and typical ANC situations 
the common term of MFxAP recursion has the greatest 

contribution to the performance for both ZA-MFxAP and 
RZA-MFxAP algorithms. For the ZA-MFxAP, we find: 

           
2 2

ˆ sgn
f f f

n n n n n    U e U U w   (5) 

For the RZA-MFxAP, we find: 

            
2 2

ˆ '
f f f

n n n n n n    U e U U Ψ Ψ (6) 

This is illustrated by a simulation example shown in Fig. 2 for 

a non-sparse plant.  Also, we note that for a step size close or 
equal to 1 we have:  

     ˆ ,0...0
T

n e ne  (7) 



These observations allow us to reduce both the computational 

complexity and the memory requirements of the ZA-MFxAP 
and RZA-MFxAP algorithms in a similar way to that of [13].  

If we denote the first column of  f
nU  as  1f

nU , and use 

(7), we obtain: 

        1
ˆ

f f
n n n e n U e U  (8) 

This step reduces the numerical complexity from KL to L. 
Therefore the complexity reduction is higher for high 

projection orders.  
 

By including (8) in (3) we obtain the weight recursion of a 
new algorithm called the Zero-Attracting Modified Filtered-X 
Pseudo Affine Projection (ZA-MFxPAP): 
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Similarly, using (8) in (4) we obtain the weight recursion of 

the Reweighted Zero-Attracting Modified Filtered-X Pseudo 
Affine Projection (RZA-MFxPAP) as follows: 
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Additional computational savings can be obtained from an 

efficient computation of      H
f f

n n n   
 

R U U I as 

follows [13]:  
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where 
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r r χ χ

r
  (12) 

and ( 1)nR  is the top left    1 1K K    submatrix of 

 1nR . Therefore, the update of  nR  needs only 2K 

multiplications instead of 2K L  multiplications. The 

approximation in (7) leads to other computational and 
memory savings due to use of scalars instead of K length 

vectors. The complexity of each algorithm in terms of 
multiplications is given in Table 1. In these complexity 
calculations we ignore the cost of inversing a K K matrix, 

 3O K  [14]. These results show that the complexity 

reduction from ZA-MFxAP to ZA-MFxPAP is the same as 

that between RZA-MFxAP and RZA-MFxPAP, and is given 
by: 

  2 6 6 2REDUCTIONC K L L K K     (13) 

It can be seen that there is a small complexity difference 
between the original algorithms and the proposed ones.  

Algorithm Number of multiplications per iteration 
ZA-MFxAP 3K2L + L2(K+1) + 7KL + 3L 

ZA-MFxPAP 2K2L + L2(K+1) + K(L+2) + 9L 

RZA-MFxAP 3K2L + L2(K+1) + 7KL + 4L 

RZA-MFxPAP 2K2L + L2(K+1) + K(L+2) + 10L 

 

Table 1. Algorithm complexity in terms of multiplications per iteration 

IV. SIMULATION RESULTS 

 

This section compares the results of simulations of the 
proposed algorithms outlined in (9) and (10) with those of the 
conventional ZA-MFxAP and RZA-MFxAP algorithms of (3) 

and (4). The results are averaged over 10 simulation trials.  
 
Three types of plant were used to perform simulations: a non-

sparse path (density 785/800), a partially-sparse path (density 
73/800) and a sparse path in which the fourth coefficient is set 

to one and all remaining coefficients to zero (density 1/800), 
all of which are identical to those used and described in [12]. 
Three types of secondary path, also identical to those in [12], 

were also generated. In Fig. 2 the non-sparse plant was used 
and the ZA-MFxAP and RZA-MFxAP algorithms were run 
for 12,000 iterations with the secondary path set as sparse at 

the start of the experiment, changed to partially-sparse at 
iteration 4,000 and to non-sparse at iteration 8,000. It can be 

seen that the norms of the same terms of weight update for 
MFxAP are much greater than those of the specific terms of 
the zero-attracting versions from [12].  

 
Figs. 3-5 show mean-square deviation (MSD) convergence 
curves for each of these experiments. For all the algorithms, 

the parameters were tuned to the same values as in [12], with 
the exception of step size, μ, for which a value of 1 was used 

throughout. For each primary path formulation, the algorithms 
were run for 220,000 iterations with the secondary path set as 
sparse at the start of the experiment, changed to partially-

sparse at iteration 10,000 and to non-sparse at iteration 70,000, 
giving sufficient time for algorithm convergence in each case. 
The first 10,000 iterations in each figure illustrate algorithm 

performance when the secondary path is sparse. The 
advantages and disadvantages of ZA-MFxAP and RZA-

MFxAP algorithms over FxAP and MFxAP were shown in 
[12] and as such are not considered here.  
It is seen in Fig. 3a that as the secondary path density 

increases, differences between the convergence curves ZA-
MFxAP and ZA-MFxPAP algorithms start to appear. The 
proposed algorithms exhibit faster convergence, but also a 



higher steady state MSD. The same conclusions can be 

obtained from Fig. 3b regarding the RZA-MFxAP and RZA-
MFxPAP when the projection order is 4. However, when the 
projection order is increased to 16, the original algorithms 

perform better than the proposed algorithms. 

 
Fig. 2. a) The norm of the left side of (5) for ZA-MFxAP algorithm; b) The 

norm of the left size of (6) for RZA-MFxAP algorithm; c) The norm of the 
right side of (5) for ZA-MFxAP algorithm; d) The norm of the right side of 

(6) for RZA-MFxAP algorithm. 

It can be deduced that for a sparse plant, the simplifying 
approximations used in the derivation of the proposed 

algorithms are not effective.  

 
Fig. 3. MSD results for sparse plant. 

 
The performance of the algorithms when the plant is partially 
sparse can be seen in Fig. 4. When the secondary path is semi-

sparse, the ZA-MFxPAP algorithm exhibits  similar behavior – 
in terms of both MSD convergence speed and steady-state 
performance – to the ZA-MFxAP algorithm (Fig. 4a). 

 
In the case of the RZA-MFxPAP algorithm, as the secondary 

path density increases in Fig. 4b and 4c, steady-state 
differences are clearly visible between RZA-MFxAP RZA-
MFxPAP. 

The results of running the algorithms for a non-sparse plant 

can be seen in Fig. 5. In this case, the performance of the 
proposed algorithms is almost identical to that of the original 
algorithms. This recommends these numerically less complex 

algorithms as an alternative to FxAP, MFxAP, ZA-MFxAP 
and RZA-MFxAP algorithms, particularly for high projection 

orders, when the plant has a low degree of sparsity. Also, it 
can be noted that when the plant is non-sparse, the 
approximations used to derive ZA-MFxPAP and RZA-

MFxPAP are valid. For all simulations considered here, when 
the secondary path is sparse, the proposed algorithms have 
almost identical performance to the original algorithms. 

 
Fig. 4. MSD results for partially-sparse plant. 

 

 
Fig. 5. MSD results for non-sparse plant. 

 

Fig. 6 shows the multiplication saving of the proposed 
algorithms over the original ones. In Fig. 6a the path length 
was varied and the projection order was 16. In Fig. 6b the 

echo path length is 800 and the projection order is varied from 
1 to 20. As expected from (13), the complexity saving is seen 
to have a linear relationship with respect to L, and a quadratic 

relationship with respect to K. 
It can be seen that the computational complexity saving 

increases with the increase of the path lengths or projection 
order. Since there is only a difference of L multiplications 



between the zero-attracting versions and re-weighted zero-

attracting versions the multiplication saving of the RZA-
MFxPAP over the RZA-MFxAP is the same as those of ZA-
MFxPAP over the ZA-MFxAP. However, the reweighed 

algorithms require L divisions per iteration, making them 
more complex to implement than the zero-attracting 

algorithms. 

 
Fig. 6. a) The multiplication savings of ZA-MFxPAP over ZA-MFxPAP for a 

variable L; b) The multiplication savings of ZA-MFxPAP over ZA-MFxPAP 
for a variable K 
 
Further work might incorporate recent improvements to 
sparse techniques [15]. It would therefore be worthwhile to 

consider algorithms incorporating a variable shrinkage 
magnitude parameter as an improvement to the algorithms 

proposed here, allowing steady-state performance to be 
improved without negatively affecting convergence rate. In 
addition, variable step-size versions or variable projection 

versions can be designed as in [5], and [16]. Also, a practical 
implementation is envisaged in order to verify the 
effectiveness of the proposed method.  

  

V. CONCLUSIONS 

    This paper has proposed new adaptive algorithms that 
exploit sparsity and approximations to the error and weight 

update of the affine projection algorithm, based on modified 
filtered-x algorithms for active noise control. The simulation 

results demonstrate that with any degree of sparsity in the 
primary or secondary path, a good compromise between 
convergence speed, steady-state error and numerical 

complexity is obtained by the proposed ZA-MFxPAP and 
RZA-MFxPAP algorithms, particularly at a relatively high 
projection orders, such as 16, and for non-sparse echo paths.  

 
Acknowledgment: This work was supported by a grant of the 

Romanian National Authority for Scientific Research, CNCS-
UEFISCDI, project number PN-II-ID-PCE-2011-3-0097. 

 

REFERENCES 

[1] B. Widrow, J. R. Glover, J. M. McCool, J. Kaunitz, C. S.  

Williams, R. H. Hearn, J. R. Zeidler, E. Dong, and R. C.  

Goodlin, “Active noice cancelling: principles and applications,” 

Proc. IEEE, vol. 63, no. 12, pp. 1692–1716, Dec. 1975. 

[2] S. M. Kuo and D. R. Morgan, “Active noise control: a tutorial 

review,” Proc. IEEE, vol. 87, no. 6, pp. 943–973, Jun. 1999. 

[3] B. Widrow, D. Shur, and S.  Shaffer, “On adaptive inverse  

control,” in Proc. 15th Asilomar Conf. Circuits Systems 

Computers, Pacific Grove, CA, 1981, pp. 185–189. 

[4] S. M. Kuo and D. R. Morgan, Active Noise Control Systems: 

Algorithms and DSP Implementations, John Wiley and Sons 
Inc., New York, NY, 1996. 

[5] A. Gonzalez, F. Albu, M. Ferrer, and M. de Diego, 

“Evolutionary and variable step size strategies for multichannel 

filtered-x affine projection algorithms,” IET Signal Process., vol. 

7, no. 6, pp. 471–476, Aug. 2013. 

[6] M. Bouchard and F. Albu, “The Gauss-Seidel fast affine 

projection algorithm for multichannel active noise control and 

sound reproduction systems”, Special Issue on Adaptive Cont rol 

of Sound and Vibration, International Journal of Adaptive 

Control and Signal Processing , vol. 19, nr. 2-3, pp. 107-123, 

March-April 2005. 

[7] E. Bjarnason, “Analysis of the filtered-x LMS algorithm,” IEEE 

Trans. Speech Audio Process., vol. 3, no. 6, pp. 504–514, Nov. 

1995. 

[8] M. Rupp and A. H. Sayed, “Modified FxLMS algorithms with 

improved convergence performance,” in  Proc. 29th Asilomar 
Conf. Signals Systems Computers, Pacific Grove, CA, 1995, pp. 

1255–1259. 

[9] E. Bjarnason, “Active noise cancellation using a modified form 

of the filtered-x LMS algorithm,” in Proc. 6th Eur. Signal 

Process. Conf., Brussels, Belgium, 1992, pp. 1053–1056. 

[10] Y. Chen, Y. Gu, and A. O. Hero, “Sparse LMS for system  

identification,” in Proc. IEEE Int. Conf. Acoust. Speech Signal 

Process., Taipei, Taiwan, 2009, pp. 3125–3128. 

[11] R. Meng, R. C. de Lamare, and Nascimento V. H., “Sparsity-

aware affine projection adaptive algorithms for system 

identification,” in Proc. Sensor Signal Process. Defence, 

London, UK, 2011, MOD, pp. 1–5. 

[12] A. Gully, R. C. de Lamare, “Sparsity aware filtered-x affine 

projection algorithms for act ive noise control”, in Proc. IEEE 

Int. Conf. Acoust. Speech Signal Process., Florence, Italy, 2014, 

pp. 6707-6711. 
[13] F. Albu, M. Bouchard, Y. Zakharov, “Pseudo Affine Projection 

Algorithms for Multichannel Active Noise Control”, IEEE 

Trans. Audio, Speech Language Process. , Vol. 15, Issue 3,  

March 2007, pp. 1044-1052.    

[14] G. H. Golub and C. F. Van Loan, Matrix computation, 3rd 

edition. Baltimore, MD: The John Hopkins Univ. Press, 1996. 

[15] R. C. de Lamare and R. Sampaio-Neto, “Sparsity-aware 

adaptive algorithms based on alternating optimization and 

shrinkage,” IEEE Signal Process. Lett., vol. 21, no.2, pp. 225–

229, Feb. 2014. 

[16] F. Albu, C. Paleologu and J. Benesty, “A Variable Step Size 

Evolutionary Affine Projection Algorithm”, in Proc. of ICASSP 

2011, Prague, Czech Republic, May 2011, pp. 429-432. 


