
Consideration on the Performance of Kernel
Adaptive Filters for the Mixture of Linear and

Non-Linear Environments
Kiyoshi Nishikawa∗, Felix Albu†

∗Department of Information and Communication Systems, Tokyo Metropolitan University
E-mail: knishikawa@m.ieice.org Tel: +81-42-585-8423
† Valahia University of Targoviste, Targoviste, Romania

E-mail: felix.albu@gmail.com

Abstract—In this paper, we consider the characteristics of the
kernel adaptive filters for the mixture of linear and non-linear
environments. We first consider employing a linear kernel as one
of the kernels in multi-kernel adaptive filters. It is pointed out
that the convergence characteristics of the filter corresponding to
the linear kernel is affected by the selection of the other kernels.
Then, we propose a new structure which uses a linear and a multi-
kernel adaptive filter simultaneously. In the proposed method, the
a posteriori error of the linear filter is calculated before updating
the multi-kernel adaptive filter. Then, the a posteriori error is
used to calculate the update term for the multi-kernel adaptive
filter. The effectiveness of the proposed method is confirmed by
computer simulations.

I. Introduction

So far, the linear adaptive filters are widely researched
and utilized in a lot of applications, such as acoustic echo
canceler, channel equalization, system identification[1], [2].
Recently, the concept of the kernel adaptive filters is proposed
by applying the kernel method to the linear adaptive filters[3].
The kernel adaptive filters enable the autonomous learning of
the non-linear systems. Several algorithms for kernel adaptive
filters had been proposed, namely, the kernel least mean
square (KLMS)[3], the kernel normalized least mean square
(KNLMS)[4], the kernel proportionate NLMS[5], the kernel
recursive least squares (KRLS)[6], the KRLS-DCD[7], [8]
and so forth. These algorithms are derived by the ones for
linear adaptive filters and have similar characteristics to their
counterparts of the linear ones.

As an extended structure, the multi-kernel adaptive filter
was proposed in [9]. It uses multiple kernels simultaneously
in the structure, e.g., the Gaussian and Polynomial kernels.
One of the advantages using the structure is that we can relax
the problem of the selection of the kernel parameter. When
we apply the kernel adaptive filters to applications, one of the
practical problem is the selection of the kernel parameters.
In the kernel adaptive filter, the Gaussian kernel is widely
used, and it has an adjustable parameter, i.e., the bandwidth
parameter. It is known that the convergence characteristics of
a kernel filter depends on the selection of the parameter[4].
By using the multiple Gaussian kernels with different values

of bandwidth parameter, we can relax the dependency of the
convergence characteristics on the kernel parameter.

In this paper, we use the multi-kernel adaptive filter structure
for considering the characteristics of the kernel adaptive filter
in the mixture of linear and non-linear environments which can
be modeled as a Volterra series. That is, we select, a linear
kernel in the multi-kernel adaptive filter structure for effective
learning of the linear components. The update equation for
the filter corresponding to the linear kernel is examined and
equivalent formula as a linear adaptive filter configuration is
derived. From the formula, it is pointed out that the non-linear
kernels affect the update of the linear-equivalent filter. Based
on this consideration, we propose a modified structure which
consists of linear and multi-kernel adaptive filters.

Different from the conventional multi-kernel structure, we
propose to use a linear adaptive filter instead of a linear kernel
in the multi-kernel structure. We show that, using the proposed
structure, we can derive an update formula for independently
update the filters without mutual affection. For that, we first
update only the linear filter and calculate the a posteriori error
using the updated filter. Then, using the a posteriori error,
the update terms for the multi-kernel filter are obtained. As
a result, we can update the linear and the multi-kernel filters
independently so that the effect of multi-kernel filter on the
linear one could be reduced. Note that the update in different
timing in the proposed method is merely conceptual, and
we show the update formula for the filters at once. Through
computer simulations, we confirm the effectiveness of the
proposed method.

II. Preparation

Here, we briefly review the kernel adaptive filters[3], es-
pecially the kernel normalized least mean square (KNLMS)
algorithm and its multi-kernel implementation[9]. Then, we
consider using a linear kernel as one of the kernels used in
the multi-kernel KNLMS algorithm.

In the following, a matrix or a vector is indicated by bold
letters, e.g., R, or r. The transpose of a matrix R is indicated
as RT, and variables at time n is expressed as R(n).

978-616-361-823-8 © 2014 APSIPA APSIPA 2014

A. Non-linear system model

For deriving the proposed method, we assume the target
environment can be modeled as a Volterra series[10], [11],
[12]. Volterra series expansion is a well-known model of non-
linear systems and is given as

y(n) = h0 +

∞∑
m1=0

h1(m1)x(n − m1)

+

∞∑
m1=0

∞∑
m2=m1

h2(m1,m2)x(n − m1)x(n − m2)

+

∞∑
m1=0

∞∑
m2=m1

· · ·
∞∑

mp=mp−1

hm(m1,m2, . . . ,mp)

× x(n − m1)x(n − m2) · · · x(n − mp)
+ . . . (1)

where y(n) and x(n) are the output and the input signals
of the system whose p-th order coefficients are given as
hp(m1, . . . ,mp). Usually the term h0 is assumed to be zero,
and in the following, we also assume h0 = 0.

Under the Volterra model, we can assume that the input-
output relation could be treated as a summation of linear terms
and non-linear, or higher order, terms. Although the Volterra
series expansion does not express all classes of non-linear
systems, we assume the equation (1) for the rest of the paper.

B. Kernel adaptive filters

The concept of a kernel adaptive filter is derived by applying
the kernel method to the linear adaptive filters[3]. To apply
the kernel method, the input signal {x(n) | n = 0, 1, 2, . . .} is
mapped onto a higher order characteristics space. We denote
the input vector of the filter at time n as x(n), and its length is
assumed to be S . Then, we express this mapping as ϕ(x(n)).

Using the input and output signals of an unknown system,
the adaptive filter will estimate the unknown system itself[2].
For the kernel adaptive filter, we expand and approximate
the coefficient vector of the adaptive filter w(n) in terms of
{ϕ(x(m)) | m = 0, . . . , n − 1} as w′(n):

w′(n) = h0ϕ(x(0)) + · · · + hn−1ϕ(x(n − 1)) (2)

where {hi | i = 0, . . . , n − 1} are the weights to be determined.
The length of w(n) and w′(n) are same as that of x(n), or S .
Using the kernel trick[13], the output signal y(n) is expressed
as

y(n) = ϕ(x(n))Tw′(n)
= ϕ(x(n))T(h0ϕ(x(0)) + · · · + hn−1ϕ(x(n − 1)))
= h0ϕ(x(n))Tϕ(x(0)) + · · · + hnϕ(x(n)))Tϕ(x(n − 1))
= h0κ(x(n), x(0)) + · · · + hnκ(x(n), x(n − 1)). (3)

where κ(·, ·) shows the kernel function. By defining the vectors
X(n) and h(n) as

X(n) = [κ(x(n), x(0)) κ(x(n), x(1)) · · · κ(x(n), x(n − 1))]T

h(n) = [h0 h1 . . . hn−1]T (4)

and substituting into (3), we have a simpler expression of y(n)

y(n) = XT(n)h(n). (5)

This equation can be interpreted as the input-output relation
of a filter h(n). Based on this expression, h(n) is regarded as
the filter coefficients of a kernel adaptive filter instead of w(n)
and, for updating h(n), we could apply the linear adaptive
algorithms with slight modifications[3].

As the kernel function, the Gaussian kernel in the following
form is generally used.

κ(x, y) = exp
(
−ζ ||x − y||2

)
(6)

where the parameter ζ is called kernel parameter or kernel
bandwidth.

C. Kernel normalized least square (KNLMS) algorithm

Here, we describe the KNLMS algorithm which is used in
the proposed method.

The KNLMS algorithm is a kernel version of the well-
known NLMS algorithm[2], [14] for linear adaptive filters.
The filter coefficients h(n) are updated by

h(n + 1) = h(n) + η
e(n)X(n)

ϵ + XT(n)X(n)
(7)

e(n) = d(n) − XT(n)h(n − 1) (8)

where η and ϵ are a step size parameter and a stabilization
parameter respectively. We should note that the order of h(n)
and X(n) will be incremented as n advances. This feature does
not exist in the linear adaptive filters.

We store the past input signals {x(j) | j = 0, 1, · · · , n−1} as a
dictionary and its size increases at each time. This means that
the computational load is time varying and long learning time
results in heavy load. To maintain the applicable amount of
calculation, several sparsification methods of the input signal
are proposed so far[3], [4], [15]. In this paper, we use the
one proposed in [4] due to its simple structure. In that, the
condition below is examined at each time

max|X(n)| j=1,··· ,J < T0 (9)

where T0 is the predefined threshold value[4], and J shows the
number of entries in the dictionary. Only when this condition
holds, x(n) will be added to the dictionary as a new entry.

D. Multi-kernel adaptive filter

One of the practical problems of the kernel adaptive filters
is to select a suitable value for kernel parameter. When we
use the Gaussian kernel, it is known that the convergence
characteristics are affected by the band width parameter ζ.
The multi-kernel filter is proposed to relax this problem by
using multiple kernels simultaneously[9].

In multi-kernel configuration, the filter output is expressed
as

yk(n) =
M∑

m=1

Jm∑
j=1

h(m)
j (n)κm(x(n), x(j)) (10)

where M shows the number of kernels used, and Jm the
number of entries in the dictionary of m-th kernel. h(m)

j (n)
shows the j-th coefficients of the adaptive filter of the m-th
kernel at time n. In Fig. 1, we show a configuration of the
multi-kernel adaptive filter[9].

Fig. 1. Configuration of the multi-kernel adaptive filter.

Although we could select any combination of kernels in this
configuration, e.g., the Gaussian and the polynomial, we only
consider to use multiple Gaussian kernels with different values
of the kernel parameters of each kernel, i.e., ζm. It is shown[9]
that the configuration could relax the problem of selecting the
optimum values for kernel parameters.

Let us consider an efficient implementation of the multi-
kernel adaptive filter under the Volterra model of (1). Here,
we consider using a linear kernel as one of the kernels in (10)
to effectively learn the linear terms of (1). The linear kernel
κℓ is expressed as

κℓ(x(n), x(i)) = xT(n)x(i) (11)

or, simply the calculation of the inner product of two vectors.
Assuming the kernel function κm(·, ·) of m = 1 is the linear

kernel, the equation (10) is rearranged as

yk(n) =
J1∑
j=1

h(1)
j (n)xT(n)x(j) +

M∑
m=2

Jm∑
j=1

h(m)
j (n)κm(x(n), x(j))

(12)

We define the output of the linear kernel yLk(n) as

yLk(n) =
n∑

j=0

h(1)
j (n)xT(n)x(j)

= xT(n)
n∑

j=0

h(1)
j (n)x(j) (13)

where it is assumed that we do not use the sparsification
method for the linear kernel, and hence, the upper limit of

the summation is set as n. Also, that of the Gaussian kernels
yGk(n) is defined as

yGk(n) =
M∑

m=2

Jm∑
j=1

h(m)
j (n)κm(x(n), x(j)) (14)

Then, we can write the error signal e(n) as

e(n) =d(n) − yk(n)
=d(n) − yLk(n) − yGk(n) (15)

Each filter coefficient vector will be updated according to the
equation

hm(n + 1) =hm(n) + η
e(n)Xm(n)∑M

m=1XT
m(n)Xm(n)

(16)

m = 1, 2, . . . ,M

Note that, for the linear kernel filter, X1(n) is given as

X1(n) = [xT(n)x(0) xT(n)x(1) . . . xT(n)x(n − 1)]T (17)

In this configuration, the linear and kernel filters are updated
using the same equation (16).

III. Proposed method

In this section, we first consider the effect of the kernel
functions on the adaptive filter corresponding to the linear
kernel when the multi-kernel filter of the previous section is
used. Then, we propose a new structure to reduce the effect
of kernel functions on the linear filter.

A. Dependency of linear kernel on the other kernels

Let us consider the effect of the kernel functions on the
adaptation of the filter corresponding to the linear kernel in
the configuration described in Section II-D.

From (16), it is known that the filter coefficient vector
corresponding to the linear kernel is updated according to the
equation below.

h1(n + 1) = h1(n) + η
e(n)X1(n)∑M

k=1XT
k (n)Xk(n)

(18)

where we assumed m = 1 for the linear kernel. Also, from
(13), we define the filter coefficients vector wℓk(n) as below

wℓk(n) =
n−1∑
j=0

h(1)
j (n)x(j) (19)

and it can be regarded as the coefficient vector of the linear
adaptive filter.

Let us rewrite the equation (16) in terms of wℓk(n) instead
of h1(n). From (18), we obtain the update formula for each
element of h(n) as

h(1)
j (n + 1) = h(1)

j (n) + η
e(n)xT(n)x(j)∑M
k=1XT

k (n)Xk(n)
. (20)

Then, the update equation of wℓk(n) is obtained as below:

wℓk(n + 1) =
n−1∑
j=0

h(1)
j (n + 1)x(j)

=

n−1∑
j=0

h(1)
j (n)x(j) +

n−1∑
j=0

η
e(n)xT(n)x(j)x(j)∑M

k=1XT
k (n)Xk(n)

= wℓk(n) +
ηe(n)∑M

k=1XT
k (n)Xk(n)

n−1∑
j=0

x(j)xT(j)x(n).

(21)

The last line of this equation resembles the formula of
the standard linear NLMS algorithm[14]. However, there are
differences between them. Namely, the denominator of the
second term includes

∑M
k=1XT

k (n)Xk(n) which depends on the
kernel functions {κm(·, ·) | m = 1, 2, · · · ,M}. It means that the
selection of kernel functions or that of kernel parameters could
affect the convergence characteristics of wℓk(n).

B. Proposed algorithm

Here, we consider the structure of the multi-kernel adaptive
filter in which the linear adaptive filter could be updated
independently of the other kernels.

Fig. 2. Possible configuration of mixture of a linear and a multi-kernel adaptive
filters.

In the proposed method, we employ a linear adaptive filter
simultaneously with the multi-kernel adaptive filter. Note the
difference from the structure considered in II-D where a linear
kernel is used as one of the multiple kernels. A possible
structure of the mixture of a linear and a kernel adaptive filters
is shown in Fig. 2. Let us denote the filter coefficients of the
linear filter as wL(n) and is expressed as

wL(n) = [w0(n) w1(n) . . . wS−1(n)]T (22)

where S shows the number of coefficients. Its output yL(n) is
defined as

yL(n) = xT(n)wL(n). (23)

Also, in the proposed method, we employ a multi-kernel
filter whose kernels are assumed to be Gaussian kernels with
different values of the kernel parameter as in [9]. The output
yk(n) of the multi-kernel filters are given as (10).

Then, the error signal ê(n) in the proposed method is given
as

ê(n) = d(n) − yL(n) − yk(n) (24)

After calculating the error signal using this equation, the
adaptive filters are updated. However, if we use ê(n) directly
for updating both of a linear and a kernel filters, the update
formula contains input signals of both filters as the one in the
previous subsection. Hence, here, we consider another way to
update each filters independently.

In contrast to (16) where all the filters are updated at once,
we propose to divide the update process into two steps in the
proposed method. Namely, first step, we propose to update
only the coefficients of linear filter wL(n) using the standard
NLMS algorithm as

wL(n + 1) = wL(n) + α
e(n)

ϵ + xT (n)x(n)
x(n) (25)

where α is the step-size parameter. After this, we calculate the
a posteriori error êp(n) of the linear filter using the updated
wL(n + 1)

êp(n) = d(n) − yL(n + 1) − yk(n)

= d(n) − xT(n)wL(n + 1) − yk(n)

= d(n) − xT(n)
{

wL(n) + α
e(n)x(n)

ϵ + xT(n)x(n)

}
− yk(n)

= d(n) − (yL(n) + ∆yL(n)) − yk(n)
= ê(n) − ∆yL(n) (26)

where ∆yL(n) is defined as

∆yL(n) = α
e(n)

ϵ + xT(n)x(n)
xT(n)x(n). (27)

Then, as the second step, the kernel filters are updated using
e(n) as

hm(n + 1) =hm(n) + η
e(n)∑M

m=2XT
m(n)Xm(n)

Xm(n) (28)

m = 1, 2, . . . ,M

The difference from the multi-kernel adaptive filter[9] is to
use the a posteriori error to calculate the error signal e(n) in
the equation (26). In Fig. 3, we show a configuration of the
proposed method.

Note that the term ∆yL(n) in (27) can be calculated before
updating wL(n). Hence, the two-step update described above
is merely conceptual, and we could update all the filters at
once.

Fig. 3. Configuration of the proposed method. ‘Update term’ shows the
calculation of the equation (27)

IV. Simulation Results

Finally, we show results of computer simulations using
the proposed method. In the simulations, we compared four
algorithms, namely, (i) the linear NLMS algorithm, (ii) the
multi-kernel NLMS algorithm, (iii) the multi-kernel NLMS
algorithm with a linear kernel, and (iv) the proposed method.

We applied these algorithms to three types of simulations
and common conditions for them are as below. We set the
step-size parameter in (i) as α = 0.1. For (ii), we used two
Gaussian kernels with different kernel bandwidth. The kernel
NLMS algorithm was used and its step-size was set as η = 0.1
for all the kernel filters. In addition to these conditions for (ii),
a linear kernel was added in (iii) and the NLMS algorithm
was used for updating the linear filter with its step-size set
as α = 0.1. Also for the proposed method, the conditions
for (ii) were used, namely two Gaussian kernels with different
bandwidth and η = 0.1, and the linear filter was updated by the
NLMS algorithm with α = 0.1. The additive Gaussian noise
was added to the desired signal whose mean was 0 and the
variance was fixed as σ2

n = 0.001. The results shown in this
section are ensemble averages of 500 independent simulations.

Note that, in the following description, we use the term
’multi kernel-linear NLMS’ to express the algorithm (iii).

A. Non-linear prediction

First, we show simulation results of adaptive prediction[4],
in which, the signal was generated by the equation

u(n) =
(
c1 − c2 exp

(
−u(n − 1)−2

))
u(n − 1)

−
(
c3 + c4 exp

(
−u(n − 1)2

))
u(n − 2)

+ c5 sin (u(n − 1)π) (29)
[c1 c2 c3 c4 c5] = [0.5 0.2 0.1 0.8 0.1] (30)

and the initial values of u(−1) and u(−2) were set as random
numbers from a uniformly distributed random variable in the
region (0, 1), and the length of the signal was 1000. Besides,
u(n) was corrupted by additive noise as described before. The
threshold value T0 was set as 0.8, and the kernel bandwidth
parameters were set as −1.8 and −10 for the algorithms (ii),
(iii), (iv).

The results of the simulations are shown in Fig. 4. From the
figure, it is confirmed that the proposed method provides faster
initial convergence rate which is inherited from the linear
NLMS algorithm.

0 200 400 600 800 1000
-35

-30

-25

-20

-15

-10

-5

Iteration n

M
e

a
n

 S
q

u
a

re
 E

rr
o

r
[d

B
]

Linear-NLMS
Proposed
Multi kernel-linear NLMS
Multikernel-NLMS

Fig. 4. Comparison of the algorithms in terms of MSE for prediction problem.

To confirm the tracking property of the proposed method,
we simulated time-varying prediction. The values of coeffi-
cients in (29) were changed at n = 500 from (30) to the values
below:

[c1 c2 c3 c4 c5] = [0.8 0.5 0.3 0.9 0.1] (31)

The results are shown in Fig. 5. We can see that the tracking
performance of the proposed method is almost same as other
algorithms.

B. Linear-dominant model

Next, we applied the adaptive filters to the following rather
artificial mixture model of linear and non-linear systems.

d(n) =a1u(n) + a2u(n − 1) + a3(0.8 − 0.5 exp(−u2(n)))u(n)

− a4(0.3 + 0.9 exp(−u2(n))u(n − 1)
− 0.1a5 sin (u(n)π) (32)

where the coefficients a1, . . ., a5 were set as

[a1 a2 a3 a4 a5] ={
[0.5 0.5 0.2 0.2 0.2] (n ≤ 500)
[0.3 0.0 0.0 0.5 0.5] (n > 500) (33)

We set T0 as 0.8, and ζm as −1.8 and −10 for the algorithms
(ii), (iii), (iv).

0 200 400 600 800 1000
-35

-30

-25

-20

-15

-10

-5

0

Iteration n

M
e

a
n

 S
q

u
a

re
 E

rr
o

r
[d

B
]

Linear-NLMS
Proposed
Multi kernel-linear NLMS
Multikernel-NLMS

Fig. 5. Comparison of the algorithms in terms of MSE for prediction problem.

The results are shown in Fig. 6. From the figure, we can
see that there are differences in the initial stage between the
convergence characteristics of the multi-kernel-linear NLMS
and the proposed method.

0 200 400 600 800 1000
-30

-25

-20

-15

-10

-5

Iteration n

M
e

a
n

 S
q

u
a

re
 E

rr
o

r
[d

B
]

Linear-NLMS
Proposed
Multi kernel-linear NLMS
Multikernel-NLMS

Fig. 6. Comparison of the algorithms in terms of MSE for linear dominant
system identification.

C. Non linear system estimation

Finally, we examine the performance of the proposed
method under the non-linear model studied in [16]: y(n) =

y(n − 1)
1 + y2(n − 1)

+ u3(n − 1)

d(n) = y(n) + ξ(n)
(34)

where u(n) and y(n) are the input and the output signals
respectively. The input signal u(n) was generated from a zero-
mean Gaussian process with the standard deviation σu = 1.

The results are shown in Fig. 7. From the figure, we can see
that the linear NLMS filter results in a higher MSE than other

algorithms. On the other hand, the proposed method achieves
almost same MSE with other kernel based ones.

0 200 400 600 800 1000
-26

-24

-22

-20

-18

-16

Iteration n

M
e

a
n

 S
q

u
a

re
 E

rr
o

r
[d

B
]

Linear-NLMS
Proposed
Multi kernel-linear NLMS
Multikernel-NLMS

Fig. 7. Comparison of the algorithms in terms of MSE for the system defined
by the equation (34).

The last model is also from [16], the signal d(n) was
generated by the equation below:

ϕ(y(n)) =

y(n)

3[0.1 + 0.9y2(n)]1/2 for y(n) ≤ 0

−y2(n)[1 − exp(0.7y(n)]
3

for y(n) < 0
(35)

d(n) = ϕ(y(n)) + ξ(n) (36)

where ξ(n) is the same as the previous model, and y(n) is given
as

y(n) = aTu(n) − 0.2y(n − 1) + 0.35y(n − 2) (37)

where a = [1 0.5]T and u(n) is

u(n) = [u1(n) u2(n)]T. (38)

The results are shown in Fig. 8. From the figure, for this
model, the mixture of the linear and kernel filters provide
better convergence characteristics than the linear or kernel only
configurations. Besides, the proposed method provides a faster
rate of convergence at the first stage compared to that of the
multi-kernel-linear NLMS.

V. Conclusions

In this paper, we considered a mixture structure of the
linear and the multi-kernel adaptive filter for modeling the
environments that can be modeled as a Volterra series. We
derived an equivalent update equation when a linear kernel
is used in the multi-kernel adaptive filter as (21), and showed
that the update equation is affected by other kernels. Then, we
proposed a new structure for the mixture usage of the kernel
and linear adaptive filters. We proposed update equations of
kernel filters using the a posteriori error of the liner adaptive
filter. The results of computer simulation shows the possibility
of better convergence characteristics of the proposed method.

0 1000 2000 3000 4000
-26

-24

-22

-20

-18

-16

Iteration n

M
e

a
n

 S
q

u
a

re
 E

rr
o

r
[d

B
]

Linear-NLMS
Proposed
Multi kernel-linear NLMS
Multikernel-NLMS

Fig. 8. Comparison of the algorithms in terms of MSE for the system defined
by the equation (36).

We will focus our future work on the theoretical analysis of
the proposed method.

Acknowledgment
References

[1] A. H. Sayed, Fundamentals of Adaptive Filtering. John Wiley & Sons,
2003.

[2] A. H. Sayed, Adaptive Filters. John Wiley & Sons, 2008.
[3] W. Liu, J. C. Principe, and S. Haykin, Kernel Adaptive Filtering. Wiley,

2010.
[4] C. Richard, J. C. M. Bermudez, and P. Honeine, “Online Prediction

of Time Series Data With Kernels,” IEEE Transactions on Signal
Processing, vol. 57, pp. 1058–1067, Mar. 2009.

[5] F. Albu and K. Nishikawa, “The Kernel Proportionate NLMS Algo-
rithm,” in Proc. EUSIPCO 2013, (Marrakech, Morocco), Sept. 2013.

[6] Y. Engel, S. Mannor, and R. Meir, “The Kernel Recursive Least-Squares
Algorithm,” IEEE Transactions on Signal Processing, vol. 52, pp. 2275–
2285, Aug. 2004.

[7] Y. Ogawa and K. Nishikawa, “A Kernel Adaptive Filter based on
ERLS-DCD Algorithm,” in Proc. of Intl Tech. Conf. Circuits Systems,
Computer, Communications 2011, (Gyeongju), pp. 1228–1231, June
2011.

[8] K. Nishikawa, Y. Ogawa, and F. Albu, “Fixed Order Implementation of
Kernel RLS-DCD Adaptive Filters,” in Proc. APSIPA ASC 2013, Oct.
2013.

[9] M. Yukawa, “Multikernel Adaptive Filtering,” Signal Processing, IEEE
Transactions on, vol. 60, pp. 4672–4682, Sept 2012.

[10] V. Mathews, “Adaptive polynomial filters,” Signal Processing Magazine,
IEEE, vol. 8, pp. 10–26, July 1991.

[11] T. Panicker and V. Mathew, “Parallel-cascade realizations and ap-
proximations of truncated volterra systems,” Signal Processing, IEEE
Transactions on, vol. 46, pp. 2829–2832, Oct 1998.

[12] F. Kuech and W. Kellermann, “Partitioned block frequency-domain
adaptive second-order volterra filter,” Signal Processing, IEEE Trans-
actions on, vol. 53, pp. 564–575, Feb 2005.

[13] C. M. Bishop, Pattern Recognition and Machine Learning. Springer,
2006.

[14] J. Nagumo and A. Noda, “A learning method for system identification,”
IEEE Transactions on Automatic Control, vol. 12, pp. 282–287, June
1967.

[15] W. Liu, I. Park, and J. C. Principe, “An information theoretic approach
of designing sparse kernel adaptive filters.,” IEEE transactions on neural
networks, vol. 20, pp. 1950–61, Dec. 2009.

[16] W. Gao, J. Chen, C. Richard, and J. Huang, “Online Dictionary Learning
for Kernel LMS,” IEEE Transactions on Signal Processing, vol. 62,
pp. 2765–2777, June 2014.

