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Abstract—Sparse adaptive filters are used extensively for 
enhancing the filter performance in a sparse system. The affine 
projection algorithm (APA) is effective in improving the 
convergence speed for strongly correlated input signals, but it is 
very sensitive to impulsive noise. Normalized Correlation 
Algorithm (NCA) is robust in impulsive noise environments. The 
affine projection normalized correlation algorithm (AP-NCA) 
used in complex-domain adaptive filters, combines the benefits of 
APA and NCA and it does not take into account the underlying 
sparsity information of the system. In this paper, we develop 
sparse AP-NCA algorithms to exploit system sparsity as well as to 
mitigate impulsive noise with correlated complex-valued input. 
Simulation results show that the proposed algorithms exhibit 
better performance than the AP-NCA for a sparse system. The 
robustness of these algorithms is evaluated in terms of Mean 
square error (MSE) performance in the adaptive system 
identification context. 

Keywords—complex-domain adaptive filters; affine projection 
normalized correlation algorithm; impulsive noise; adaptive system 
identification 

I. INTRODUCTION

In many real-life systems, the impulse response of the 
system is assumed to be sparse, containing only a few active 
taps in the presence of a large number of inactive taps [1-3]. 
Sparse systems are usually encountered in applications such as 
network and acoustic echo cancellers [4], wireless multipath 
channels [5, 6]. 

Adaptive filtering algorithms have received much attention 
over the past decades and are widely used for diverse 
applications such as system identification, interference 
cancellation, and channel estimation. In recent years, sparse 
adaptive filters have been developed to exploit the system 
sparse information and the performance can be greatly 
improved when compared with the conventional algorithms 
such as Least Mean Square (LMS) and Affine Projection 
Algorithm (APA) [7, 8]. Based on the assumption of the 
Gaussian noise model, sparse algorithms are derived by 
applying the 1-norm relaxation into the LMS cost function 
[9, 10], sparsity-aware p-norm penalized and reweighted 1-
norm penalized LMS algorithms are derived in [11, 12], and 
sparsity-aware affine projection adaptive algorithms for 

system identification are proposed in [13-15]. However, these 
methods may be unreliable in estimating the systems under 
non-Gaussian impulsive noise environments. For example, the 
least mean square (LMS) [9] algorithm performance is 
affected by strong impulsive noise [16]. Several sign 
algorithms (SA) have been proposed in [17-19] to suppress 
impulsive noise under the assumption of the dense impulse 
response. In [20], the standard sign least mean square (SLMS) 
algorithm was proposed in order to achieve the robustness 
against impulsive noise. For adaptive filters defined in the 
complex-domain, the Normalized correlation algorithm 
(NCA) was proposed [21] for robust filtering in severe 
impulsive noise environments. In [22-24], considering the 
sparse information in a wireless channel, several sparse SLMS 
algorithms were proposed to exploit system sparsity and to 
mitigate non-Gaussian impulsive noise. In [25-26] a flexible 
zero attractor constraint is utilized in sparse channel 
estimation under the mixed Gaussian noise environment. 
However, when the input signal is strongly correlated the 
performance of sparse SLMS algorithms deteriorates. 

When the input to the adaptive filter is assumed to be 
colored (correlated) input, the standard LMS filter may 
converge slowly. To improve the filter performance for 
colored signals, the Affine Projection Algorithm has been 
proposed [27]. For a large projection order, the APA algorithm 
has faster convergence, but the steady-state error is higher 
resulting in a convergence vs steady-state error tradeoff. Also, 
new sparse algorithms based on Lyapunov stability [28] or 
reweighted least-mean mixed-norm adaptive filter algorithm 
[29] for adaptive system identification have been proposed.

In order to utilize the benefits of APA and NCA, the
Affine Projection Normalized Correlation Algorithm (AP-
NCA) was proposed [30]. The AP-NCA achieves faster 
convergence for a correlated input and is also robust against 
impulsive noises. To fully take advantage of the sparse 
structure present in the system, in this paper, we propose 
sparse AP-NCA algorithms with different sparse norm 
constraint functions. 

The remaining part of the paper is organized as follows. 
Section II presents the stochastic models to generate impulse 
noise and Section III reviews the AP-NCA algorithm. In 
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Section IV, we propose four sparse AP-NCA algorithms. 
Simulation results are provided in Section V to validate the 
effectiveness of the proposed algorithms. Finally, Section VI 
concludes the paper. 

II. IMPULSE NOISE MODELS

The stochastic models used to generate impulse noise are 
presented in this section. We observe that the two types of 
impulse noise entering adaptive filtering systems can be the 
observation noise and another at the input of adaptive filter. 

A. Gaussian mixture model (GMM)
A model often used for impulsive observation noise is the

Gaussian mixture model (GMM) [31]. GMM is a combination 
of two independent noise sources (n)v(1) and (n)v(2) . The noise 

source (n)v(1)  has a variance 2

1v with probability of

occurrence )(1 , and the noise source (n)v(2)  has 2

2v with

the probability of occurrence .  Usually, .2

1

2

2 vv  The 

GMM distribution is given as 

)N(0,))N(0,(1p(v(n))
21 vv

22      (1) 

The variance of GMM is given by         

1 2

2 2
v v

2 2
v

E v (n) 1 . Note that v(n)  will reduce 

to Gaussian noise model if 0 . 

B. Bernoulli-Gaussian Model (B-G)
When impulse noise enters the reference input x(n) , the

filter input b(n)  is written as q(n)x(n)b(n) . q(n)  is the 
impulse noise modeled by a Bernoulli-Gaussian (BG) process 
[32], given as ,(n)(n)vq(n) a with (n)va  assumed to be a

White Gaussian process, and its variance is 2
av . (n) is a 

binary process, described by the probability 
( ( ) 1) ,p n P ( ( ) 0) 1p n P , where P  represents the 

probability of occurrence of the impulsive noise, (n)va .

III. AFFINE PROJECTION NORMALIZED CORRELATION
ALGORITHM  

The system identification problem is shown in Fig. 1. Let 
Lx1T C1)Ln1),.....x(x(nx(n),(n)x  be the filter input

vector of length L. x(n)  is the complex-valued regressor 
process. The output signal from an unknown system with tap 
coefficient vector h is given by )(nxu(n) Th . 

( ) [ ( ), ( 1),...... ( 1)]TW n w n w n w n L is an estimate of h at 
iteration n and L is the length of the adaptive filter. The update 
equation for the APA is given by  

*1
( 1) ( ) ( ) ( ) ( ) ( ),H

MW n W n X n X n X n I e n (2)  

where ,LxMC1)M(nx1),....(nx(n),x(n)X  is the
input signal matrix and M is the projection order.  is the 
step-size of APA filter,  is the regularization term, MI is the 

MxM  identity matrix, H.  is the conjugate transpose, *.  is 
the complex conjugate, T.  is the transpose of a matrix or a 
vector. 

Fig. 1. Block diagram of adaptive sparse system identification 

(n),*(n)(n)X(n)*e H v       (3) 

where (n),W-(n) h  is the misalignment vector and, 

Mx1T C1)M1).....v(nv(nv(n),(n)v  is the noise
vector. If M=1, the APA algorithm simplifies to NLMS 
algorithm. 

The update equation for Normalized Correlation 
Algorithm (NCA) is given by 

,
l

(n)z(n)/z(n)W1)(nW                (4) 

where, (n)xe(n)(n)(n),....zz(n),z(n)z T
1L10 is the

correlation vector and 
1

( )z n  is the Euclidean norm of the 

correlation vector. Since 
1

( ) ( ) . ( ) ,z n e n x n  the update 
equation can be rewritten as 

*( 1) ( ) ( ) ( ) / ( ) ,e l
W n W n n x n x n              (5) 

with e(n)e(n)/(n)e . 

The Affine Projection Normalized Correlation Algorithm 
(AP-NCA) is updated as follows 

(n)*I(n)X(n)X(n)X(n)W1)(nW e
1/2

M
H      (6) 
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where, Mx1CT
eeee 1)M(n1),....(n(n),(n) . If 

M=1, the AP-NCA algorithm behaves as NCA algorithm. 

IV. PROPOSED SPARSE ADAPTIVE FILTERING ALGORITHMS

To exploit the system sparsity and robustness against
impulsive noises, four sparse algorithms are proposed by 
introducing effective sparsity constraints into the standard AP-
NCA namely, Zero Attracting AP-NCA (ZA-APNCA), 
Reweighted Zero Attracting AP-NCA (RZA-APNCA), 
Reweighted L1-norm AP-NCA (RL1-APNCA) and Flexible 
Zero Attracting AP-NCA (FZA-APNCA). 

A. The Zero Attracting AP-NCA (ZA-APNCA) algorithm
Let the cost function of ZA-APNCA algorithm denoted by

1
( ) ( ) ( )ZA ZAJ W n J W n W n     (7) 

where ( )J W n  is the cost function related to AP-NCA
algorithm without sparsity constraint and ZA is the
regularization parameter which balances the estimation error 
and 

1
( )W n . 

The weight update equation of ZA-APNCA algorithm is 
derived as 

1/2 *( 1) ( ) ( ) ( ) ( ) ( )      (8)

sgn( ( )),

H
M ee

ZA

W n W n X n X n X n I n

W n
where ZA ZA and sgn(.)  denotes the well-known sign 
function. 

B. The Reweighted Zero Attracting AP-NCA (RZA-APNCA)
algorithm
Let the cost function of RZA-APNCA algorithm be

1

0
( ) ( ) log(1 ( ) ),RZA RZA RZA i

L

i
J W n J W n w n      (9) 

where RZA is the regularization parameter which balances the

estimation error and 
1

0
log(1 ( ) )RZA i

L

i
w n . 

The weight update equation of RZA-APNCA algorithm is 
derived as 

(n)WRZA1

(n))Wsgn(RZA

(n)*
e

1/2
MI(n)X(n)X(n)X(n)W1)(nW H

 (10) 

where RZA RZA RZA  

C. The Reweighted L1-norm AP-NCA (RL1-APNCA)
algorithm
Let the cost function of RL1-APNCA algorithm be

1 1 1
( ) ( ) ( ) ( )RL RLJ W n J W n f n W n     (11) 

where 1RL  is the weight associated with the penalty term and 

1

1( ) ,
[ ( 1)]i

RL i

f n
W n

10,1,.....Li               (12) 

1 0RL and hence 0i(n)f for 10,1,.....Li .

The weight update equation of RL1-APNCA algorithm is 
derived as 

1/2 *

1

1

( 1) ( ) ( ) ( ) ( ) ( )    

sgn( ( ))
,   (13)

( 1)

H
M e

RL

RL

W n W n X n X n X n I n

W n
W n

where 1 1RL RL . 

D. The Flexible Zero Attracting AP-NCA (FZA-APNCA)
algorithm
The flexible zero attractor is realized using the

approximation parameter adjustment function defined as 
1( ( )) (1 ) 1 W nS W n e ,              (14) 

where is a small positive constant. 
The modified cost function obtained by incorporating 
( ( ))S W n function into the AP-NCA cost function is the 

following
( ) ( ) ( ( )).FZA FZAJ W n J W n S W n            (15) 

The weight update equation of FZA-APNCA algorithm is 
derived as 

1/2 *

'

( 1) ( ) ( ) ( ) ( ) ( )

( ( )),

H
M e

FZA

W n W n X n X n X n I n

S W n
(16) 

where, 

))sgn( 1(nW
)1)(nW(-

1)e(1))(nW('S   (17) 

V. SIMULATION RESULTS

In this section, we evaluate the performance of the 
proposed sparse adaptive algorithms in the context of system 
identification. The length of the unknown system is set as L = 
16 with system sparsity of K = {4, 8} and the adaptive filter is 
also assumed to have the same length. The correlated 
(colored) input signal is generated by using a Gaussian white 
noise with variance 2 1x  (0 dB) through a first-order
autoregressive process, AR(1), with a 0.5 pole. The system 
noise ( )v n  contains white Gaussian noise with SNR = 20 dB 
and impulse noise. The algorithms are compared based on the 
performance of the Mean Square Error (MSE) between the 
actual and estimated CIR. The average of 100 trials is used in 
evaluating the results. 
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Detailed parameters for computer simulation are listed in 
Table I. 

TABLE I. SIMULATION PARAMETERS 

Parameters Values

Input Signal  Correlated/Colored Input: AR(1) Gaussian process with 
pole 0.5; x(n)=0.5x(n 1) +u(n) 

Unknown 
System Length 

L=16 

No. of nonzero 
coefficients 

System sparsity, K={4, 8} 

Distribution of 
nonzero 
coefficients 

Random Gaussian distribution )1,0(N

Projection 
order 

M=4 

SNR 20 dB
Noise types 

Case 1: “white” Gaussian noise, v
2  = 0.01 (–20 dB) 

Case 2: Observation noise: Gaussian Mixture Model 
(GMM) 

= 0.1,
1

2
v = 0.01 (-20 dB), 

2

2
v = 10 (10 dB). 

Case 3: Impulse noise at filter input: Bernoulli-Gaussian 
(B-G) model 

0.1
avp , 2

av =1000 (30 dB) 

Case 4: GMM & impulse noise at filter input 

A. Comparison of the proposed sparse AP-NCA algorithms
under noise case 1
The performance of the proposed sparse algorithms under

the assumption of “white” Gaussian noise is shown in Fig. 2. 
It can be noticed that the proposed sparse APNCA algorithms 
exhibit better performance in terms of MSE when the system 
is highly sparse and it reduces as the system sparsity increases. 
The FZA-APNCA algorithms achieve minimum steady state 
error value. 

B. Comparison of the proposed sparse AP-NCA algorithms
under noise case 2
The performance of the proposed sparse algorithms under

the assumption of GMM modeled impulsive observation noise 
is shown in Fig. 3. It can be noticed that the proposed sparse 
APNCA algorithms exhibit better performance in terms of 
MSE when the system is highly sparse and it reduces as the 
system sparsity increases. The FZA-APNCA achieves 
minimum steady state error value. 

C. Comparison of the proposed sparse AP-NCA algorithms
under noise case 3
The performance of the proposed sparse algorithms under

the assumption of impulse noise at filter input is shown in Fig. 
4. It can be noticed that the proposed sparse APNCA
algorithms exhibit better performance in terms of MSE when
the system is highly sparse and it reduces as the system
sparsity increases.

Fig. 2. MSEs of the proposed sparse AP-NCA algorithms for noise case 1 
(“white” Gaussian) with the projection order, M=4 and different system 
sparsity of, (a) K=4, and (b) K=8. 

D. Comparison of the proposed sparse AP-NCA algorithms
under noise case 4
The performance of the proposed sparse algorithms under

the assumption of GMM observation noise & impulse noise at 
filter input is shown in Fig. 5. It can be noticed that the 
proposed sparse APNCA algorithms exhibit better 
performance in terms of MSE when the system is highly 
sparse and it reduces as the system sparsity increases. The 
FZA-APNCA achieves minimum steady state error value. 
Similar results were obtained for higher L values in all 
previous cases. Our future work will be focused on theoretical 
convergence analysis and examining the tracking abilities of 
the proposed algorithms.  
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Fig. 3. MSEs of the proposed sparse AP-NCA algorithms for noise case 2 
(impulsive observation noise: GMM) with the projection order, M=4 and 
different system sparsity of, (a) K=4, and (b) K=8. 

Fig. 4. MSEs of the proposed sparse AP-NCA algorithms for noise case 3 
(impulse noise at filter input:B-G) with the projection order, M=4 and 
different system sparsity of, (a) K=4 and (b) K=8. 

Fig. 5. MSEs of the proposed sparse AP-NCA algorithms for noise case 4 
(GMM  noise & impulse noise at filter input) with the projection order, 
M=4 and different system sparsity of, (a) K=4 and (b) K=8. 
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VI. CONCLUSION

The AP-NCA algorithm developed 
 has faster convergence for correlated 

inputs and at the same time highly robust in the presence of 
impulsive noise, but it does not promote sparsity. Hence, in 
this paper, we have proposed four sparse APNCA algorithms 
in the sparse system identification context. Simulation results 
validate our proposed sparse algorithms in exploiting the 
system sparsity as well as robust to 

 in the complex domain. 
Moreover, the proposed FZA-APNCA algorithm exhibit 
superior performance in Gaussian and non-Gaussian noise 
environments.  
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