
Fast Recursive AMIPAP Algorithm

Felix Albu

Faculty of Electronics

Valahia University of Targoviste

Targoviste, Romania

felix.albu@valahia.ro

Abstract – The approximate memory improved

proportionate affine projection algorithm has been

proposed for sparse system identification. This

paper presents a fast recursive implementation of

this algorithm. Three ideas used previously for

other affine projection variants are used: auxiliary

coefficients vectors, periodically update of the

proportionate coefficients and recursive filtering of

the error vector. Simulation results are made in

order to show the performance of the algorithm for

network echo cancellation example.

Keywords-adaptive filtering, proportionate affine

projection, sparse impulse response, fast

implementation.

I. INTRODUCTION

The normalized least mean squares (NLMS) algorithm

and the affine projection (AP) algorithms have been

extensively used for network and acoustic echo

cancellation. Their proportionate versions proved very

useful especially for cases of long and sparse echo

paths. The proportionate-type algorithms have an

increased convergence rate because each coefficient of

the filter is updated independently of the others, by

adjusting the adaptation step-size in proportion to the

magnitude of the estimated filter coefficient. The

proportionate AP (PAP) [1] and improved PAP (IPAP)

[2], the memory IPAP (MIPAP) algorithm [3], the μ-

law MIPAP (MMIPAP) [4] and individual-activation-

factor memory PAP (IAF-MPAP) [5] algorithms were

developed starting from this principle. The main

difference between the above mentioned algorithms is

given by the proportionate matrix computation. The

complexity of the memory PAP (MPAP) algorithms

[6] can be reduced by using sign based proportionate

affine algorithms in case of impulsive environments

[7]. An approximated MIPAP (AMIPAP) algorithm

[6] was proposed to reduce the complexity of MIPAP

by forcing the symmetry of a matrix to be inverted.

Several simplified proportionate and intermittently

updated versions have been investigated in [8]-[9].

Also simplified or dichotomous coordinate descent

[10] versions were developed [11].

In this paper, a fast version of AMIPAP-family type

algorithms is developed by combining the

proportionate matrix approximation from [6], the fast

exact filtering approach from [6] and [11], the auxiliary

coefficient vector computation taken from [12] and the

periodic update of the proportionate coefficients

experimented in [8] and [13]. It is also shown in this

paper that AMIPAP algorithms and its fast recursive

version need a higher regularization factor at beginning

in order to compensate for the approximation of the

proportionate matrix.

The paper is organized as follows. Section II presents

the proposed algorithm and investigates its numerical

complexity. The simulation results are presented in

Section III. Finally, the conclusions are given and ideas

for further improvements are proposed.

II. FRAMIPAP ALGORITHM

In an echo cancellation system, the far-end signal is
x(k), and the reference signal d(k), where k is the time
index. The adaptive FIR filter is given by the coefficient

vector   0 1()... ()
T

Lk w k w k   w , where L is the

length of the adaptive filter and superscript T denotes
transposition. The error signal vector is given by

     k k k e d y , where the desired signal is

   ()... (1)
T

k d k d k M  d , the filtered-out vector

is       0 11 ()... ()
TT

Mk k k y k y k     y X w , the

input data matrix is    ()... (1)k k k M  X x x , the

input vector is    ()... (1)k x k x k L  x , and

  0 1()... ()
T

Mk e k e k   e , M is the projection order

and filter length and L is the length of the adaptive filter.

The weight coefficients of AMIPAP algorithm are
computed as follows [6]:

         11k k k k k   w w P S e (1)

where μ is the normalized step-size parameter and

 kP and  kS are computed as shown in the

following lines. Like in [3]

        11 1k k k k
   
 

P g x P (2)

with  
   

   1

2 1 ...
1

1

k k
k

k M k M


  
   

    

g x
P

g x
,

contains the first M – 1 columns of  1k P and the

operator denotes the Hadamard product.

The matrix  kS , is obtained by updating both its first

row and its first column with

     1T k k k   X g x and adding  to the first

 2

element, where  is a regularization parameter. The

bottom-right    1 1M M   submatrix of  kS is

replaced with the top-left    1 1M M   submatrix

of  1k S [6].

In AMIPAP algorithm the proportionate coefficients
are computed as follows:

   
 

 
1

0

1
1

2
2 1

l
l L

i
i

w k
g k

L
w k










  

 

 (3)

where  is a small constant and [1 1]   .

In case of  -law algorithms [4]  lg k is evaluated as

follows:

   
  

  
1

0

1
1

2
2 1

l
l L

i
i

F w k
g k

L
F w k










  

 

 (4)

where      ln 1l l lF w k w k  and l is a

constant.

The fast adaptation of the weight vector is inspired from
[12] and adapted from [14]:

          1ˆ ˆ1 1 Mk k k M k M E k     w w g x

 (5)

and

   
 

0

1
k k

k

 
   

  

E ε
E

 (6)

where  1k E consists of upper M – 1 elements of

     0 1,...,
T

Mk E k E k   E whose elements are

given by    
0

m

m i
i

E k k m i


   [13] and

     

     

1

1

,...,

 =

T

o Mk k k

k k k

 







   ε

P S e

 (7)

Another step in deriving the fast implementation of
AMIPAP is the use of a fast filtering procedure [10].
This step was firstly used for proportionate algorithms
in [11]. Following the same steps as in [11] the
following equations are obtained:

  
       

   0 2

ˆ 1 + 2 ...

1 ... 1

T
T T

M

k k k k
k

y k y k

  
 
   

x w r E
z

 (8)

        1k k k k  y z G (9)

where      1Tk k k G X P and

     2Tk k k r P x [13].

The update of  kG and  kr requires few operations

due to their special structure and common elements
with other matrices and vectors computed in previous
iterations.

It can be noticed that the auxiliary coefficients  ˆ kw

are updated instead of the real coefficients  kw that

are needed to compute the proportionate coefficients

vector  kg . In order to reduce the overall average

complexity these coefficients can be computed less

often. It was found by simulations that this

approximation does not lead to important performance

losses if the update factor is around the projection

factor M for typical values (i.e., between 2 and 10).

This finding is in accordance with previous findings

regarding the intermittently updated proportionate

affine projection algorithms [8], [9]. In this case, the

computation of g(k) needs LM/p multiplications per

sample, where p is the updating factor. If an update is

performed at every M iterations (i.e., p = M) the

computation of g(k) needs L multiplications per

sample. The proposed algorithm is called Fast

Recursive AMIPAP (FRAMIPAP) algorithm. In case

the logarithmic coefficients are used the acronym is

FRAMMIPAP. The AMIPAP using logarithmic

coefficients is called AMMIPAP.

A. Numerical complexity

The numerical complexity of FRAMIPAP in terms of
multiplications is the following (for p = M):

   2
FRAMIPAP 6 1/ mC L M M M M P      (10)

The notation Pm = O(M3) indicates the numerical
complexity in terms of multiplications associated with
solving the linear systems of equations using the LDLT
method [15]. The MIPAP complexity in terms of

multiplications is  MIPAP 4 1 mC L M M P    and

the complexity of AMIPAP is

 AMIPAP 3 2 mC L M M P    [6]. The use of

logarithmic proportionate coefficients requires
additional L logarithmic functions and L additions per
iteration in comparison with the linear coefficients.

Fig. 1 shows the numerical complexity comparison in
two situations: a) as a function of L and fixed M = 10
and b) as a function of M and fixed 512L  . The

number of multiplications varies linearly with the filter
length for all the considered algorithms. It can be seen
from Fig. 1 that FRAMIPAP is the least complex in
terms of multiplications, followed by AMIPAP and
MIPAP. The computational savings are higher
especially for large filter lengths or projection orders.

 3

For example, with L = 512 and M = 10, the FRAMIPAP
needs only 8609 multiplications, while the MIPAP
needs 21257 multiplications. Therefore, MIPAP is
about 2.5 times more complex than the proposed
algorithm. AMIPAP needs 16394 multiplications,
therefore, it is about 90% more complex than
FRAMIPAP. This important complexity reduction in
terms of multiplications is compensated by increased
memory requirements.

Fig. 1 Numerical complexity of the considered

algorithms in terms of multiplications for two

situations: a) L = 512, variable M; b) M = 10, variable

L.

III. SIMULATION RESULTS

Computer simulations are made for a network echo

cancellation application. The sampling rate is 8 kHz

and the first impulse response from ITU-T G.168

padded with zero is used [16]. The other parameters are

L = 512, and SNR = 30 dB. An abrupt change of the

echo path is simulated by shifting the impulse response

with 12 samples. The performance is evaluated in

terms of mean square deviation (MSD) and the results

are averaged over 10 trials. The step size was set to μ

= 0.5, 0  , and 1000l  were used.

For the first simulation an AR(1) with coefficients (1,

-0.95) is used. The MSD results of FRAMIPAP and

AMIPAP (corresponding to FRAMIPAP without

periodic update) were compared. The regularization

parameter was 2200 /x L  and M = 10. It can be

seen from Fig. 2a that the performance of both

algorithms are close and the MSD difference is less

than 1dB for this case.

The AMIPAP algorithm has a high sensitivity in case

of lower regularization values [13]. This is caused by

the approximation used in deriving the algorithm. Even

when using very small regularization values a simple

solution is to use a much higher regularization value

for the first 100-300 iterations and return to the initial

value afterwards. The number of iterations depends on

the filter length. Fig. 3a shows the MSD difference

between MIPAP and AMIPAP using a very small

regularization value (as simulated in [13]) and a

stabilized AMIPAP. The input was a composite source

signal (CSS) and M = 4. Fig. 3b clearly shows that the

eventual spikes of the AMIPAP convergence curve

that appears when using a very low regularization

value has disappeared when a much higher initial

regularization value was used. The stabilized solution

was used in all the other simulations of this paper for

the AMIPAP or FRAMIPAP algorithms.

Fig. 2 a) MSD performance of the FRAMIPAP and

AMIPAP algorithms for an AR(1) input; b) MSD

difference.

Fig. 3 MSD performance of MIPAP, unstable AMIPAP
and stabilized AMIPAP for a CSS input and two

situations: a) 210 / Lx  ; b) 2300 / Lx  .

In Fig. 4, the performance of the proposed FRAMIPAP

is compared with that of MIPAP and AMIPAP

algorithms for both linear and logarithmic

proportionate coefficients [4] and M = 5.

It can be observed from Fig. 4 that the proposed fast

recursive algorithms achieve similar performance with

their original versions. A comparison of the original

algorithms performance with other state-of-the-art

algorithms has been investigated in [3], [6], [8], [14]

etc. Therefore, it is proved that an update at every M

iterations of the proportionate vector is not degrading

the performance of the proposed algorithms for both

computational methods (linear and logarithmic

respectively). The possible few dB losses is a good

compromise for the important complexity reduction

achieved by the proposed fast recursive versions.

However, special attention should be given to the

regularization values and high regularization values are

required for a good convergence behavior.

 4

Fig. 4 Misalignment performance of the considered

algorithms with M = 5 and μ = 0.5 for speech input; a)

linear proportionate coefficients; b) logarithmic

proportionate coefficients.

Our simulations have shown that if a very high

projection order is used (i.e., M > 10) a lower update

factor should be used for very sparse echo paths (i.e., p

< 10).

The performance of the proposed algorithm using 32-

bit logarithmic number system (LNS) implementation

[17] was investigated and compared with the 32-bit

floating point results. The results are almost identical

and confirmed similar conclusions obtained for a wide

range of algorithms [17].

Future work will be focused on developing an

intermittently update version depending on the

detected path sparseness or filter state as in [8] or [9]

and adapt it for active noise control [18] and adaptive

feedback cancellation [19].

IV. CONCLUSION

In this paper a low-complexity implementation of

AMIPAP using both linear and logarithmic

proportionate coefficients has been presented. The

time-shift and symmetry of several matrices and an

equivalent periodic update of the filter weights has

been used in order to derive the FRAMIPAP algorithm.

It is shown that an important complexity reduction is

achieved with minor performance losses if special care

is given to the choice of the regularization factor.

ACKNOWLEDGMENT

This work was supported by a grant of the Romanian

National Authority for Scientific Research, CNCS-

UEFISCDI, project number PN-II-ID-PCE-2011-3-

0097.

REFERENCES

[1] D. L. Duttweiler, “Proportionate normalized least mean-
squares adaptation in echo cancellers,” IEEE Trans. Speech
Audio Process., Feb. 2000, vol. 8, pp. 508–518.

[2] O. Hoshuyama, R. A. Goubran, and A. Sugiyama, “A
generalized proportionate variable step-size algorithm for fast
changing acoustic environments,” in Proc. of IEEE ICASSP
2004,vol. IV, pp. 161–164.

[3] C. Paleologu, S. Ciochina, and J. Benesty, “An efficient
proportionate affine projection algorithm for echo
cancellation,” IEEE Signal Process. Lett., Feb. 2010, vol. 17,
pp. 165–168.

[4] J. Yang and G. E. Sobelman, “Efficient μ-law improved
proportionate affine projection algorithm for echo
cancellation,” Electron. Lett., Jan. 2011, vol. 47, pp. 73–74.

[5] H. Zhao, Y. Yu, S. Gao, X. Zeng, and Z. He, “Memory
proportionate APA with individual activation factors for
acoustic echo cancellation,” IEEE/ACM Trans. Audio, Speech,
Lang. Process., vol. 22, pp. 291–294, June 2014.

[6] F. Albu, C. Paleologu, J. Benesty, and S. Ciochina, “A low
complexity proportionate affine projection algorithm for echo
cancellation,” in Proc. of EUSIPCO 2010, pp. 6–10.

[7] F. Albu, H.K. Kwan, “Memory improved proportionate affine
projection sign algorithm,” IET Electronics Letters, vol. 48,
(20), October 2012, pp. 1279-1281.

[8] F. Albu, “New proportionate affine projection algorithm,” in
Proc. of Inter-Noise and Noise-Con Congress and Conference,
2012, vol. 11, pp. 40-46.

[9] F. Albu, H. Coanda, D. Coltuc and M. Rotaru, “Intermittently
updated simplified proportionate affine projection algorithm,”
in Proc. of ADAPTIVE 2014, pp. 42-47.

[10] Y. Zakharov, “Low complexity implementation of the affine
projection algorithm,” IEEE Signal Processing Letters, vol. 15,
pp. 557-560, 2008.

[11] F. Albu, “A proportionate affine projection algorithm using
fast recursive filtering and dichotomous coordinate descent
iterations,” in Proc. of SPAMEC 2011, August 2011, pp. 93-
96

[12] S. Gay, S. Tavathia, “The fast affine projection algorithm,” in
Proc. of ICASSP’95, 1995, pp. 3023–3026.

[13] F. Yang, J. Yang, “Fast implementation of a family of memory
proportionate affine projection algorithm,” in Proc. of ICASSP
2015, pp. 3507-3511.

[14] F. Yang, M. Wu, J. Yang, and Z. Kuang, “A fast exact filtering
approach to a family of affine projection-type algorithms,”
Signal Processing, August 2014, vol. 101, pp. 1–10.

[15] G. H. Golub and C. F. Van Loan, Matrix computation, 3rd
edition. Baltimore, MD: The John Hopkins Univ. Press, 1996.

[16] Digital Network Echo Cancellers, ITU-T Rec. G.168, 2002.

[17] F. Albu, J. Kadlec, N. Coleman, A. Fagan, “Pipelined
Implementations of the A Priori Error-Feedback LSL
Algorithm Using Logarithmic Number System,” in Proc. Of
ICASSP 2002, May 2002, pp. 2681-2684.

[18] M. Bouchard, F. Albu, “The Gauss-Seidel fast affine projection
algorithm for multichannel active noise control and sound
reproduction systems,” International Journal of Adaptive
Control and Signal Processing, vol. 19, nr. 2-3, pp. 107-123,
March-April 2005.

[19] M. Rotaru, F. Albu, H. Coanda, “A Variable Step Size
Modified Decorrelated NLMS Algorithm for Adaptive
Feedback Cancellation in Hearing Aids,” in Proc. of ISETC
2012, Nov. 2012, pp. 263-266.

