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Abstract – The approximate memory improved 

proportionate affine projection algorithm has been 

proposed for sparse system identification. This 

paper presents a fast recursive implementation of 

this algorithm. Three ideas used previously for 

other affine projection variants are used: auxiliary 

coefficients vectors, periodically update of the 

proportionate coefficients and recursive filtering of 

the error vector. Simulation results are made in 

order to show the performance of the algorithm for 

network echo cancellation example. 
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I. INTRODUCTION 

The normalized least mean squares (NLMS) algorithm 

and the affine projection (AP) algorithms have been 

extensively used for network and acoustic echo 

cancellation. Their proportionate versions proved very 

useful especially for cases of long and sparse echo 

paths. The proportionate-type algorithms have an 

increased convergence rate because each coefficient of 

the filter is updated independently of the others, by 

adjusting the adaptation step-size in proportion to the 

magnitude of the estimated filter coefficient. The 

proportionate AP (PAP) [1] and improved PAP (IPAP) 

[2], the memory IPAP (MIPAP) algorithm [3], the μ-

law MIPAP (MMIPAP) [4] and individual-activation-

factor memory PAP (IAF-MPAP) [5] algorithms were 

developed starting from this principle. The main 

difference between the above mentioned algorithms is 

given by the proportionate matrix computation. The 

complexity of the memory PAP (MPAP) algorithms 

[6] can be reduced by using sign based proportionate 

affine algorithms in case of impulsive environments 

[7]. An approximated MIPAP (AMIPAP) algorithm 

[6] was proposed to reduce the complexity of MIPAP 

by forcing the symmetry of a matrix to be inverted. 

Several simplified proportionate and intermittently 

updated versions have been investigated in [8]-[9]. 

Also simplified or dichotomous coordinate descent 

[10] versions were developed [11].  

In this paper, a fast version of AMIPAP-family type 

algorithms is developed by combining the 

proportionate matrix approximation from [6], the fast 

exact filtering approach from [6] and [11], the auxiliary 

coefficient vector computation taken from [12] and the 

periodic update of the proportionate coefficients 

experimented in [8] and [13]. It is also shown in this 

paper that AMIPAP algorithms and its fast recursive 

version need a higher regularization factor at beginning 

in order to compensate for the approximation of the 

proportionate matrix.   

The paper is organized as follows. Section II presents 

the proposed algorithm and investigates its numerical 

complexity. The simulation results are presented in 

Section III. Finally, the conclusions are given and ideas 

for further improvements are proposed. 

 

II. FRAMIPAP ALGORITHM 

In an echo cancellation system, the far-end signal is 
x(k), and the reference signal d(k), where k is the time 
index. The adaptive FIR filter is given by the coefficient 

vector   0 1( )... ( )
T

Lk w k w k   w , where L is the 

length of the adaptive filter and superscript T denotes 
transposition. The error signal vector is given by 

     k k k e d y , where the desired signal is  

   ( )... ( 1)
T

k d k d k M  d , the filtered-out vector 

is       0 11 ( )... ( )
TT

Mk k k y k y k     y X w , the 

input data matrix is     ( )... ( 1)k k k M  X x x  , the 

input vector is     ( )... ( 1)k x k x k L  x , and 

  0 1( )... ( )
T

Mk e k e k   e , M is the projection order 

and filter length and L is the length of the adaptive filter. 

The weight coefficients of AMIPAP algorithm are 
computed as follows [6]: 

         11k k k k k   w w P S e                     (1) 

where μ is the normalized step-size parameter and  

 kP  and  kS  are computed as shown in the 

following lines. Like in [3] 
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contains the first M – 1 columns of  1k P  and the 

operator  denotes the Hadamard product.  

The matrix  kS , is obtained by updating both its first 

row and its first column with 

     1T k k k   X g x  and adding   to the first 
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element, where   is a regularization parameter.  The 

bottom-right    1 1M M    submatrix of  kS  is 

replaced with the top-left    1 1M M    submatrix 

of  1k S  [6]. 

In AMIPAP algorithm the proportionate coefficients 
are computed as follows: 

   
 

 
1

0

1
1

2
2 1

l
l L

i
i

w k
g k

L
w k










  

 

              (3) 

where   is a small constant and [ 1 1]   . 

In case of  -law algorithms [4]  lg k  is evaluated as 

follows: 
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where      ln 1l l lF w k w k   and l  is a 

constant. 

The fast adaptation of the weight vector is inspired from 
[12] and adapted from [14]: 

          1ˆ ˆ1 1 Mk k k M k M E k     w w g x

  (5) 

and    
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where  1k E  consists of upper M – 1 elements of 

     0 1,...,
T

Mk E k E k   E  whose elements are 

given by    
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Another step in deriving the fast implementation of 
AMIPAP is the use of a fast filtering procedure [10]. 
This step was firstly used for proportionate algorithms 
in [11]. Following the same steps as in [11] the 
following equations are obtained: 

  
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        1k k k k  y z G  (9) 

where      1Tk k k G X P  and 

     2Tk k k r P x  [13]. 

The update of  kG and  kr  requires few operations 

due to their special structure and common elements 
with other matrices and vectors computed in previous 
iterations. 

It can be noticed that the auxiliary coefficients  ˆ kw  

are updated instead of the real coefficients  kw  that 

are needed to compute the proportionate coefficients 

vector  kg . In order to reduce the overall average 

complexity these coefficients can be computed less 

often. It was found by simulations that this 

approximation does not lead to important performance 

losses if the update factor is around the projection 

factor M for typical values (i.e., between 2 and 10). 

This finding is in accordance with previous findings 

regarding the intermittently updated proportionate 

affine projection algorithms [8], [9]. In this case, the 

computation of g(k) needs LM/p multiplications per 

sample, where p is the updating factor. If an update is 

performed at every M iterations (i.e., p = M) the 

computation of g(k) needs L multiplications per 

sample. The proposed algorithm is called Fast 

Recursive AMIPAP (FRAMIPAP) algorithm. In case 

the logarithmic coefficients are used the acronym is 

FRAMMIPAP. The AMIPAP using logarithmic 

coefficients is called AMMIPAP.  

 

A. Numerical complexity  

 
The numerical complexity of FRAMIPAP in terms of 
multiplications is the following (for p = M):  

   2
FRAMIPAP 6 1/ mC L M M M M P      (10) 

The notation Pm = O(M3) indicates the numerical 
complexity in terms of multiplications associated with 
solving the linear systems of equations using the LDLT 
method [15]. The MIPAP complexity in terms of 

multiplications is  MIPAP 4 1 mC L M M P     and 

the complexity of AMIPAP is 

 AMIPAP 3 2 mC L M M P     [6]. The use of 

logarithmic proportionate coefficients requires 
additional L logarithmic functions and L additions per 
iteration in comparison with the linear coefficients.  

Fig. 1 shows the numerical complexity comparison in 
two situations: a) as a function of L and fixed M = 10 
and b) as a function of M and fixed 512L  . The 

number of multiplications varies linearly with the filter 
length for all the considered algorithms. It can be seen 
from Fig. 1 that FRAMIPAP is the least complex in 
terms of multiplications, followed by AMIPAP and 
MIPAP. The computational savings are higher 
especially for large filter lengths or projection orders. 
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For example, with L = 512 and M = 10, the FRAMIPAP 
needs only 8609 multiplications, while the MIPAP 
needs 21257 multiplications. Therefore, MIPAP is 
about 2.5 times more complex than the proposed 
algorithm. AMIPAP needs 16394 multiplications, 
therefore, it is about 90% more complex than 
FRAMIPAP. This important complexity reduction in 
terms of multiplications is compensated by increased 
memory requirements. 

 
Fig. 1 Numerical complexity of the considered 

algorithms in terms of multiplications for two 

situations: a) L = 512, variable M; b) M = 10, variable 

L. 

 

III. SIMULATION RESULTS 

Computer simulations are made for a network echo 

cancellation application. The sampling rate is 8 kHz 

and the first impulse response from ITU-T G.168 

padded with zero is used [16]. The other parameters are 

L = 512, and SNR = 30 dB. An abrupt change of the 

echo path is simulated by shifting the impulse response 

with 12 samples. The performance is evaluated in 

terms of mean square deviation (MSD) and the results 

are averaged over 10 trials.  The step size was set to μ 

= 0.5, 0  , and 1000l   were used.  

For the first simulation an AR(1) with coefficients (1, 

-0.95) is used. The MSD results of FRAMIPAP and 

AMIPAP (corresponding to FRAMIPAP without 

periodic update) were compared. The regularization 

parameter was 2200 /x L   and M = 10. It can be 

seen from Fig. 2a that the performance of both 

algorithms are close and the MSD difference is less 

than 1dB for this case.  

The AMIPAP algorithm has a high sensitivity in case 

of lower regularization values [13]. This is caused by 

the approximation used in deriving the algorithm. Even 

when using very small regularization values a simple 

solution is to use a much higher regularization value 

for the first 100-300 iterations and return to the initial 

value afterwards. The number of iterations depends on 

the filter length. Fig. 3a shows the MSD difference 

between MIPAP and AMIPAP using a very small 

regularization value (as simulated in [13]) and a 

stabilized AMIPAP. The input was a composite source 

signal (CSS) and M = 4. Fig. 3b clearly shows that the 

eventual spikes of the AMIPAP convergence curve 

that appears when using a very low regularization 

value has disappeared when a much higher initial 

regularization value was used. The stabilized solution 

was used in all the other simulations of this paper for 

the AMIPAP or FRAMIPAP algorithms.  

 

Fig. 2 a) MSD performance of the FRAMIPAP and 

AMIPAP algorithms for an AR(1) input; b) MSD 

difference. 

 
Fig. 3 MSD performance of MIPAP, unstable AMIPAP 
and stabilized AMIPAP for a CSS input and two 

situations: a) 210 / Lx  ; b) 2300 / Lx  . 

In Fig. 4, the performance of the proposed FRAMIPAP 

is compared with that of MIPAP and AMIPAP 

algorithms for both linear and logarithmic 

proportionate coefficients [4] and M = 5.  

It can be observed from Fig. 4 that the proposed fast 

recursive algorithms achieve similar performance with 

their original versions. A comparison of the original 

algorithms performance with other state-of-the-art 

algorithms has been investigated in [3], [6], [8], [14] 

etc. Therefore, it is proved that an update at every M 

iterations of the proportionate vector is not degrading 

the performance of the proposed algorithms for both 

computational methods (linear and logarithmic 

respectively). The possible few dB losses is a good 

compromise for the important complexity reduction 

achieved by the proposed fast recursive versions. 

However, special attention should be given to the 

regularization values and high regularization values are 

required for a good convergence behavior.  
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Fig. 4 Misalignment performance of the considered 

algorithms with M = 5 and μ = 0.5 for speech input; a) 

linear proportionate coefficients; b) logarithmic 

proportionate coefficients. 

 

Our simulations have shown that if a very high 

projection order is used (i.e., M > 10) a lower update 

factor should be used for very sparse echo paths (i.e., p 

< 10).  

The performance of the proposed algorithm using 32-

bit logarithmic number system (LNS) implementation 

[17] was investigated and compared with the 32-bit 

floating point results. The results are almost identical 

and confirmed similar conclusions obtained for a wide 

range of algorithms [17]. 

Future work will be focused on developing an 

intermittently update version depending on the 

detected path sparseness or filter state as in [8] or [9] 

and adapt it for active noise control [18] and adaptive 

feedback cancellation [19].    

 

IV. CONCLUSION 

In this paper a low-complexity implementation of 

AMIPAP using both linear and logarithmic 

proportionate coefficients has been presented. The 

time-shift and symmetry of several matrices and an 

equivalent periodic update of the filter weights has 

been used in order to derive the FRAMIPAP algorithm. 

It is shown that an important complexity reduction is 

achieved with minor performance losses if special care 

is given to the choice of the regularization factor. 
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