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Abstract—MRI analysis frameworks are practical tools for 

accelerating the analysis by clinical researchers. However, over 

time, the focus has shifted to creating rigid frameworks. This 

paper presents a new framework that allows researchers to run 

different deep learning models based on predefined parameters 

suitable for automatically delineating the region of interest from 

magnetic resonance (MR) images of the knee joint. In addition, we 

present different deep learning methods for the automated 

segmentation of knee bones trained using data from the SKI10 

challenge, concentrating on a convolutional neural network 

(CNN), which has proven promising potential in musculoskeletal 

imaging applications. We also propose a novel method that weighs 

the average of the surrounding pixels when the image is 

downsampled within a CNN. 
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I. INTRODUCTION 

 Segmentation of the knee joint is essential to identify 
degenerative joint diseases such as osteoarthritis (OA). 
However, most magnetic resonance imaging (MRI) studies 
focus only on an end-to-end deep learning framework using a 
single network. For instance, Kam et al. [1] developed a novel 
end-to-end framework to detect noise components in resting-
state functional MRI, a technique for functional brain studies. 
They used only one database without analyzing other deep 
learning (DL) techniques. In addition, there is no flexibility in 
the use of different parameters or CNNs. Like Kam, Lee et al. 
[2] developed a new segmentation method for knee joints, but 
using this time two CNNs, (i) a bone cartilage complex, where 
they incorporated all four classes into two classes (tibia and tibia 
cartilage in one class, and femur and femur cartilage in the 
second class), and (ii) bone segmentation of the femur and tibia 
only. Their approach does not cover the analysis of multiple 
CNNs or the use of different parameters.  

 Under these conditions, we developed a novel framework for 
magnetic resonance (MR) images called smartMRI, inspired by 
our previous work [3] on the classification of EEG signals. This 
approach allows clinical researchers to swiftly develop their own 
CNNs and test different parameters. In this paper, we present the 
entire framework, such as the ability to use (i) any training and 

validation parameters and (ii) any deep learning methods used 
to identify the best performance of our approaches. In Table I, 
we present a comparison of the existing Python MRI deep-
learning frameworks and our proposal. 

Furthermore, we propose a novel CNN, entitled Pseudo3D GU-
Net (Gaussian U-Net), which gives more weight to the central 
pixel value so that we can control the blurring of the image in 
the pooling layer by retaining more spatial information from the 
three slices. In contrast to Vu et al. [4], who developed a Pseudo-
3D using an odd number of slices (3, 5, 7, 9, 11, 13) to obtain a 
2D feature map that was fed straight into a 2D network, we 
propose a Pseudo3D U-Net with a number of slices of 3 by 
employing a novel downsampling method using a Gaussian 
filter.  

 The remaining sections of this paper are Section II, which 
describes the MRI framework; Section III, which explains the 
novel Pseudo3D GU-Net approach; Section IV presents the 
results of different CNNs on knee joint segmentation; and 
Section V concludes our work and provides future directions. 

II.  PROPOSED FRAMEWORK 

 SmartMRI is a framework that automates training of 
multiple DL models using Python 3.7 [5]. 

 

Fig. 1.  Proposed MRI framework 

TABLE I.  EXISTING FRAMEWORKS 

Author Testing different methods Flexibility  

Kam et al. [1]        No No 

Lee et al. [2] No No 

Ciurea et al. [3] Yes No 

This work Yes Yes 
 



 

 

 The structure of this framework is shown in figure 1 as 
follows:  

- Pytorch model builder. In this file, we build different models 
using the Pytorch library [6] so that we can take advantage of 
parallel computing on a graphical processing unit (GPU) to 
accelerate deep learning for computer vision. We employed the 
following CNNs for comparison:  2D U-Net [7] and Pseudo3D 
U-Net with maximum filters of 128; Pseudo3D Dense U-Nets 
with maximum filters of 512 and 868, respectively; and a novel 
Pseudo3D GU-Net with a maximum number of filters of 128 
and 868, respectively.  

- MRI model selection customizes different models from the 
Pytorch model builder file. 

- Configurator. This block specifies the class selection for up to 
five classes (ground truth, tibia bone, femur bone, tibial 
cartilage, and femoral cartilage) and training and validation sets. 
The model names, loss functions, batch length, patience, 
validation methods (e.g., 80/20 split and k-fold), are 
configurable parameters in the training and validation settings. 

 - Generate MRI images (X) and labels (Y). This block 
normalizes the MRI images (X) between 0 and 1 and creates 
labels (Y) dependent on the selected number of classes.  

- Parallel computing (CUDA) [8]. The model, along with the 
training and validation parameters, was loaded into the GPU. 
During training, the IDE console was updated with the training 
and validation parameter performance.   

- Save parameters and metrics. The weights of the best epoch 
are saved when early stopping regularization is not enabled; 
otherwise, they are not saved to the disk. 

-Batch Run sets the next configuration from the "Configurator” 
block and saves the training and validation settings along with 
the MRI metrics for later analysis by clinical researchers.  

III. PSEUDO3D GU-NET 

 In this section, we introduce a novel deep learning approach 
that provides more weight to the current pixel position instead 
of calculating the maximum value in each patch of each feature 
map, and the results are downsampled. We used gaussian 
filtering [9], which is essential in image processing for reducing 
noise and blurring regions of an image and is defined by: 

 G(x, y, σ) =
1

2π𝜎2
𝑒
−
𝑥2+𝑦2

2𝜎2                       (1) 

where x and y are the row and column dimensions, and σ the 
blur factor. To apply our GaussPool approach to the input image, 
we returned a kernel gauss of 3 × 3 with a blur factor of 1. First, 
our GaussPool function unfolds the image using the same kernel 
gauss size by generating the patches and finally multiplying 
them by the kernel gauss (figure 2).   

 The The Pseudo3D GU-Net is presented in figure 3, where 
we used three sequential cropped slices of 256 × 256 as input 
images, followed by repeated 3 × 3 convolutions, batch 
normalization, and a rectified linear unit (ReLu) activation 
function to replace all negative values in the feature map by zero, 
and all positive values retaining the same value, followed by the 
3 × 3 Gaussian pooling presented above. At each downsampling 

step, we doubled the number of feature channels, except for the 
fourth and fifth steps, where we kept the same feature maps of 
868 to avoid filling the GPU memory to its maximum capacity.  
We then upsampled the image by applying a 2D transposed 
convolution operator and concatenated the central slice from the 
encoder with the 2D upsampled image. The output of the 
network is a 2D image with three classes (ground truth, femur 
bone, and tibia bone). 

 

Fig. 2. Kernel gauss approach. (i) On the left side: original image, where the 

colored squares are patches in both directions (x,y). (ii) In the middle, the kernel 

Gaussian filter was multiplied by each patch. On the right: the downsampled 

image generated by (i) and (ii) 

 

Fig. 3. The proposed method: Pseudo3D GU-Net 

IV. RESULTS 

 In this section, we present the functionality of our framework 
by comparing different convolution neural networks using 
different feature maps to the network bottleneck.  

A. Data set 

The SKI10 data set is a publicly available MRI dataset 
consisting of 60 training and 40 validation MR images. The data 
set was mostly acquired at 1.5T, some at 3T and 1T with an in-
plane resolution of 0.39 x 0.39 mm, approximately 300x356 
matrix dimension (actual matrix varies with the size of the knee 
joint), a slice thickness of 1 mm, and approximately 100 image 
slices in the sagittal plane. The majority of images used a T1-
weighted sequence, but some of them were also obtained with 



 

 

T2-weighting. Clinicians manually segmented the multi-class 
mask for the knee joint for each image data set with the 
following values: 0 for the background, 1 for the femur, 2 for the 
femoral cartilage, 3 for the tibia, and 4 for the tibial cartilage. 
However, in our paper, we analyzed three classes (background, 
tibia, and femur). 

B. Training set-up 

 We trained our models using the sagittal plane and employed 
the Adam optimizer with a learning rate of 0.0001 using early 
stopping with patience of three epochs to prevent overfitting of 
the model. The maximum number of epochs was set to 100. The 
loss function mostly used was Focal Tversky Loss (FTL) [10] 
focusing on hard examples, such as small regions of interest 
(ROI) with the help of gamma, which was set to 0.7. 
Furthermore, we applied the softmax activation function at the 
output of the models. 

C. Evaluation metrics  

 To evaluate our models, we split the data into 60 images for 
training and 40 images for validation for each patient, and 
employed several metrics used for the segmentation accuracy of 
the MRI volumes. First, the Dice similarity coefficient (DSC) 
represents the spatial overlap of the ground truth (GT) 
segmentation and predicted segmentation by the total size of the 
two objects. Second is the average symmetric surface distance 
(ASSD), where we compare the average closest distance 
between the outline of the predicted values and the outline of the 
GT values, and vice versa. Finally, we used the root mean square 
symmetric surface distance (RMSD) to consider the squared 
distances between the two sets of boundaries; a value of 0 
corresponds to a perfect overlap between the two segmentations. 
ASSD and RMSD are expressed in millimeters, as shown in 
figure 4. 

D. CNNs employed 

 The convolutional neural networks built in this work are as 
follows: (i) a 2D U-Net with maximum filters of 128 (2D U-
Net128), (ii) a pseudo3D U-Net with maximum filters of 128 
(P3D U-Net128); (iii) dense U-Net, where we use connections 
between layers to increase the number of feature channels with 
maximum filters of 512 and 868, respectively, and our approach 

uses a Pseudo3D Gaussian U-Net of 868 and 128 maximum 
filters (P3D GU-Net868 and P3D GU-Net128).  

 Fig. 5 shows the segmentation of the best networks shown in 
figure 4. We observed that P3D GU-Net128 and P3D U-Net128 
could not accurately predict the femur bone (FB) and tibia bone 
(TB) marked with red and blue, respectively. On the other hand, 
P3D GU-Net868, with maximum feature maps of 868, better 
captures global image information and generates less ambiguity 
in terms of the localization of small ROIs.  

 In Table II, we compare our results with the current state-of-
the-art, where we highlight the DSC average and mean standard 
deviation (STD) of the femur bone (FB) and tibia bone (TB) for 
40 patients. In addition, we show the symmetric surface distance 
averages for ASSD, RMSD, and mean STD in Table III. 

TABLE II.  DSC RESULTS AND COMPARISON 

 

Methods 

60 training/ 40 

validation 

DSC (STD)  

FB TB 

Lee et al [2] 97.3 (1.9) 84.4 (4.1) 

P3D U-Net128 97.5 (0.008) 97.1 (0.030) 

P3D GU-Net128 97.6 (0.009) 96.8 (0.025) 

P3D GU-Net868 97.8 (0.009) 97.1 (0.025) 

 

 

Fig. 4. Model comparison. Top: DSC average, higher is better. Bottom: 

Symmetric Surface Distances average, lower is better. 

 

 

Fig. 5. CNNs segmentation results; FB and TB are delineated with red and 

blue, respectively. 



 

 

 

TABLE III.  SURFACE DISTANCE RESULTS AND COMPARISON 

 

Methods 

60 training/ 40 

validation 

Average  
FB-ASSD TB-ASSD FB-RMSD TB-RMSD 

Lee et al [2] 0.58 (0.45) 0.47 (0.32) 1.73 (0.85) 1.53 (1.05) 

P3D U-Net128 0.35 (0.20) 0.46 (0.37) 0.87 (0.82) 1.32 (1.21) 

P3D GU-Net128 0.34 (0.18) 0.47 (0.31) 0.85 (0.64) 1.33 (1.18) 

P3D GU-Net868 0.30 (0.16) 0.37 (0.30) 0.72 (0.58) 0.90 (1.01) 

 

E. Results Discussion 

 The presented convolutional neural networks showed 
promising results. As shown in figure 4, Pseudo3D GU-Net868 
outperformed the other models. For this model, ASSD and 
RMSD have lower mean standard deviations, which means that 
data are clustered around the mean and not spread out (Table 
III). Furthermore, the average of the ASSD of 0.30(0.16) mm for 
FB and 0.37(0.30) mm for TB, respectively indicates that the 
average of all the distances from points of the boundary of the 
predicted region to the boundary of the ground truth (target) and 
vice versa are close to each other compared to other networks 
employed. Lower RMSD scores of 0.72(0.58) mm for FB and 
0.90(1.01) mm for TB, respectively indicate how concentrated 
the data is around the line of best fit and the Pseudo3D GU-
Net868 is the one that fits the best. 

 P3D GU-Net128 and P3D U-Net128 had lower performance 
than Pseudo3D GU-Net868 because of the lack of distinctive 
features, making it harder to recognize patterns in images. In 
contrast, P3D GU-Net868 performs better than the rest of the 
CNNs due to increasing details in the image and preserving more 
information from the neighbors.  

V. CONCLUSIONS 

 We compared different CNNs employing our smartMRI 
framework to assess the performance of each network tested. In 
addition, we propose a novel deep learning method called 
Pseudo3D GU-Net, which outperforms current state-of-the-art 
methods, especially in terms of ASSD and RMSD metrics. In 
this approach, we replaced each image pixel with a weighted 
average of the neighbouring pixels by applying a Gaussian filter 
of 3 × 3. In addition, we feed a sub-volume of 3 sequential slices 
extracted from the whole volume to output a 2D image, retaining 
more detail of the image with minimal computational cost being 
more efficient than a fully 3D CNN. In terms of future work, we 
propose to add more parameters in the configurator and use a 
similar approach as GaussPool but using median pooling. Our 

models were tested on 3 classes to find the best approach and 
validate the proposed Pseudo3D GU-Net. We also plan to use 
different data sets and to train to detect the remaining 2 classes, 
femoral and tibial cartilages, to diagnose patients prone to knee 
joint diseases such as osteoarthritis. Furthermore, we plan to test 
our approach on unseen data together with clinicians and try the 
presented approach on other applications such as howling 
detection on spectrograms of hearing aids signals. 
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