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ABSTRACT 

 

In this paper, the kernel proportionate normalized least 

mean  square algorithm (KPNLMS) is proposed. The 

proportionate factors are used in order to increase the 

convergence speed and the tracking abilities of the kernel 

normalized least mean square (KNLMS) adaptive algorithm. 

We confirm the effectiveness of the proposed algorithm for 

nonlinear system identification and forward predict ion using 

computer simulat ions. 

 
Index Terms— Kernel normalized least mean square 

algorithm, proportionate-type algorithms, nonlinear system 

identification, forward pred iction. 

 
1. INTRODUCTION 

 

Linear adaptive filters have been used in a variety of 

applications, e.g., echo or noise cancelation, equalizat ion in 

wireless communication channels etc. In system 

identification applications, the main goal is to identify an 

unknown system using an adaptive filter [1]. For example, 

in case of network and acoustic echo cancellation scenarios,  

the echo path is sparse in nature, i.e., a s mall percentage of 

the impulse response components have a significant 

magnitude while the rest are zero  or small. The sparseness 

character of the echo paths inspired the idea to 

“proportionate” the algorithm behavior, i.e., to update each 

coefficient of the filter independently of the others, by 

adjusting the adaptation step-size in proportion to the 

magnitude of the estimated filter coefficient [2]. The 

proportionate normalized least-mean-square (PNLMS) 

algorithm [3] was one of the first proportionate-type 

algorithms. The improved PNLMS algorithm proposed in 

[4] has superior convergence properties, especially for 

sparse echo paths. Other proportionate-type algorithms can 

be found in [5]. 

      Recently, as an extension of the linear counterparts, 

kernel adaptive filters have been proposed to identify non-

linear systems [6]. Kernel adaptive filters are derived by 

applying the kernel method to linear adaptive filters, and 

several algorithms were proposed, i.e., the kernel recursive 

least squares (KRLS) [7], the kernel least mean square 

(KLMS) [8], the kernel normalized LMS (KNLMS) [10], 

kernel affine project ion (KAP) [9] and its efficient 

implementation [10], the kernel ERLS-DCD [11] algorithms 

etc.  

      The kernel algorithms require some settings (e.g. the 

kernel functions, the kernel parameters, or the parameter for 

sparseness [6], [9]). In this paper, we propose to apply the 

proportionate principle proposed for linear filters [4] to the 

non-linear filters.  

      The contribution of this paper is that the proportionate 

idea is adapted for the KNLMS algorithm. To the best of our 

knowledge, this work is the first that proposes the 

proportionate principle fo r kernel based algorithms.   

      The paper is organized as follows. Section 2 represents 

an overview of the kernel methods, of the KNLMS 

algorithm and the proportionate-type algorithms. In Section 

3, the proposed KPNLMS algorithm is introduced and its 

numerical complexity  is investigated. The simulat ion results 

presented in Sect ion 4 compare the proposed algorithm with 

KNLMS in d ifferent scenarios. Finally, the conclusions are 

given and ideas for further improvements are proposed .  

 

2. OVERVIEW OF THE KERNEL METHODS, 

KNLMS AND PROPORTIONATE ALGORITHMS  

 

2.1. The kernel method 

 

The conventional kernel filters were described in many 

works (e.g. [6], [9], [12]). The input signal  x n  at moment 

n is transformed into a high dimensional feature space F by 

a transformat ion function  x  and the output of the 

adaptive filter is given by  

        ,Tf n n n x x w  (1) 



where        0 1 1, ,..., ,Mn w n w n w n   w  are filter 

coefficient vector of the adaptive filter,  where  iw n , and 

M is the i-th coefficient of the filter at moment n and the 

length of the filter respectively. The tap-input vector is  

       , 1 ,..., 1 .n x n x n x n M     x  We assume that 
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The vectors  jy  are a subset of  , 0,1,..., 1l l n x  and 

j  is the weight corresponding to  jy . Then, the output 

in (1) is expressed [6] as 
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In the kernel adaptive filter,    1 2, ,...,
T

mn   α is 

regarded as the coefficient vector of the adaptive filter 

instead of  nw  [8], [9]. In these algorithms the inner 

product      T n j x y in Eq. (3) is obtained via the 

kernel function. A kernel function  ,k    is given as: 

     ,             , TX k   a b a b a b  (4) 

and used to calculate the inner product in the space F [6]. 

The Gaussian kernel defined as below is widely used in 

kernel adaptive filtering: 

   2
, exp ,k   a b a b  

(5) 

where    is the Euclidean norm and   is the kernel 

parameter.  

 

2.2. The kernel normalized LMS  algorithm 

 

The kernel normalized LMS (KNLMS) algorithm was 

presented in [9]. First, Eq. (3) is re-written as 

      f n n nx h α where  
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Then, the filter  nα  is updated using a linear adaptive 

algorithm. We define the matrix D, called the dictionary, as 

   1 ,..., .m   D y y The vectors stored in the dictionary D 

are m ( m n ) input vectors of the previous time, where m 

is a variable determined by the algorithm below. Then, nD  

(D at t ime n) and  nh  are updated according to the pseudo 

algorithm from [12]. The value of the threshold 0  [9] is 

determined according to the sparseness of the signal, and 

ranges between 0 and 1. Finally, the filter coefficients  nα  

are updated as follows:  
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where   is the normalized step-size parameter in the range 

0 2   and   is a small regularizat ion. 

 

2.3. The improved PNLMS algorithm  

 

In the context  of echo cancellation  the far-end signal is x(n), 

the reference signal of the adaptive filter is d(n) and an 

adaptive filter is used to model the echo path. Let us assume 

an adaptive filter defined by the real-valued coefficients 

vector        0 1 1
ˆ ˆ ˆˆ , ,...,

T

Ln h n h n h n
 
 

h , where L is the 

length of the adaptive filter. The error signal is defined as : 

       ˆ 1 ,Te n d n n n  h x  (8) 

where        , 1 ,..., 1
T

n x n x n x n L     x .  

A proportionate-type NLMS algorithm [3] updates its 

coefficients according to: 
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where μ  is the step-size parameter, δ is the regularization 

constant, and  1nG  is an L x L d iagonal matrix which 

assigns an individual step-size to each filter coefficient. The 

NLMS algorithm is obtained as a particular case of Eq. (9) if 

 1nG  is the unity matrix i.e. the update equation is :  
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In the case of the IPNLMS algorithm [4], the diagonal 

elements of  1nG , denoted in the following by 

 1lg n , with 0 1l L   , are evaluated as: 
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where 1 1    and the small positive constant ξ avoids 

division by zero. Therefore we have  

      0 11 1 ,..., 1Ln diag g n g n   G . (12) 

 

3. THE PROPOS ED ALGORITHM 

 

3.1. The KPNLMS algorithm 



The proportionate factors idea can  be adapted in order to  

“proportionate” the KNLMS algorithm behavior. If we note 

the output kernel error        1Te n d n n n  h α  Eq. (7) 

can be re-written as:  
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The similarity of Eq. (13) with Eq. 10 is further exp lo ited by 

computing the following proportionate coefficients : 
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where  lh n  are the coefficients of  nh , with 

0 1l m   . The matrix  1nP  is formed as an m x m 

diagonal matrix with null coefficients except the diagonal 

terms given by  1lp n . Therefore we have: 

      0 11 1 ,..., 1mn diag p n p n   P . (15) 

The kernel proportionate NLMS algorithm (KPNLMS) 

updates the nα coefficients according to: 

   
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3.2. Numerical complexity issues 

 

The added complexity of using the proportionate factors is 

rather small if compared with the overall complexity of the 

KNLMS algorithm or other algorithms such us KAP or 

KRLS. The KNLMS algorithm has 3m+1 mult iplications 

and 3m additions (does not include the function kernel 

computation) [9]. The KPNLMS requires additional 2m 

multip licat ions, 2m addit ions and one division if compared 

with the KNLMS algorithm.  

 

4. SIMULATION RES ULTS  

 

The performances of the proposed algorithm for system 

identification and forward predict ion problems were 

investigated by computer simulations. For all the 

simulations a white Gaussian noise of SNR =40 dB with 

zero mean was added, 0.001  , 0 0.9  , and 810   

were used. 

      Figure 1 shows the comparison of KNLMS and 

KPNLMS in  terms of the mean  squared errors (MSEs) 

averaged over 100 independent trials. Two filter lengths 

were considered (M = 2 and M = 10). The fo llowing 

parameters of the algorithms were used: 0.13   , 0 1  , 

and 0.8  . The desired signal was generated with the 

equations: 

          21.1exp 1 ;  v n v n u n d n v n     . (17) 

      It can be seen from Figure 1 than KPNLMS has a faster 

convergence and simultaneously obtains a lower excess 

MSE than KNLMS. Also, fewer iterations are needed in 

order to get the same MSE value in case of filters with a 

smaller M value.  

      The influence of a s maller the s tep size   is examined in 

Figure 2. It can  be seen from Figures 1 and 2 that the 

convergence of the algorithms is slower and higher MSE 

values are obtained for a smaller   value. A lso, it can be 

noticed that KPNLMS convergence properties are superior 

to those of KNLMS.   

      The influence of 
0  is examined in  Figure 3 for the 

parameters used in Figure 1. The last 500 MSE values were 

averaged over 100 independent runs. The value of 
0  was 

varied from 0.1 to 0.95 in  increments of 0.05. It can  be seen 

from Figure 3 that the min imum mean MSE value is 

obtained for 
0 0.9  in case of both M values. A practical 

compromise between the model order and its performance 

could be obtained by 
0 0.6  too.   

 

Figure 1: Comparison of convergence characteristics of 

KNLMS and KPNLMS applied to system identification for 

1   in two cases: a) M  = 2; b) M = 10.  

      Next, we show the results for the channel equalizat ion of 

a multipath Rayleigh fading  channel [6]. The length of the 

signal was 1000, M = 5, the maximum Doppler frequency 

was 100 Hz, and the sampling rate was set to 0.8s.  

Figure 4 confirms that KPNLMS has better convergence 

properties than KNLMS. The evolution of the order of 

dictionary is also shown and emphasizes the necessity of 

using techniques for limiting its size without compromising 

the overall performances like those proposed in [6] or [13] .  

      Next, we show the results of forward prediction. The 

following parameters were used: 3.73   , 1  and 

0.5  . For this case, the forward predict ion equation is :  



       

     
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(18) 

 

Figure 2: Comparison of convergence characteristics of 

KNLMS and KPNLMS applied to system identification for 

0.1   in two cases: a) M  = 2; b) M = 10.  

     It can be seen from Figure 5 that KPNLMS has a faster 

convergence and simultaneously maintain the lower excess 

MSE than KNLMS for both M values. Also, a smaller MSE 

value is obtained by using a higher M value.  

     Next, an investigation of the tracking ability is examined 

by simulating a non-stationary environment. The same 

parameters of Figure 5 were used. The non-stationary 

environment is simulated by a change of the equation 

starting at n = 100 for the forward pred iction fo rmula (Eq . 

19). 

 
Figure 3: Mean MSE of KPNLMS for the last 500 iterations 

for different 0  values in two cases: M = 2 and M = 10.    

 

   Figure 4: Comparison of convergence characteristics of 

KNLMS and KPNLMS for the channel equalization of a 

multipath Rayleigh fad ing channel  

 

Figure 5: Comparison of convergence characteristics of 

KNLMS and KPNLMS applied to  forward  prediction 

problem for 1   in two cases: a) M = 2; b) M = 10.  

For the first 100 iterations the following equation is 

used: 

       

     

  

2
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       0.1 0.9exp 1 2

       +0.5sin 1 .

x n x n x n

x n x n

x n 


    
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

 

(19) 

It can be seen from Figure 6 that the tracking abilities 

of KPNLMS are superior to those of KNLMS. Also, from 

all previous simulations it can be seen that KPNLMS 

obtains better improvements over KNLMS especially for 

lower M values.  

Like fo r the linear case, the value of   in fluences the 

convergence characteristics of KPNLMS. For the next 



simulations M = 5, 1   and three values of  were used: -

1, 0 and 1. In Figure 7a the system identification case from 

Figure 1 is used ( 0.13   ). In Figure 7b the non-

stationary example o f Figure 6 is used ( 3.73   ).  

 

Figure 6: Comparison of convergence characteristics of 

KNLMS and KPNLMS applied to a non-stationary 

environment problem for 1   and 2M  .  

 
Figure 7: Comparison of convergence characteristics of 

KNLMS and KPNLMS in two cases for M = 5: a) system 

identification example; b) non-stationary environment 

example. 
 

Figure 7a shows that for the system identification 

example the value of  should be closer to 1 in general, 

while for non-stationary environments (see Figure 7b) 

should be closer to -1. The value 0   leads to 

intermediate convergence performance in both situations.  

 

5. CONCLUS IONS 

 

In this paper, the superior convergence characteristics and 

tracking abilities of the KPNLMS algorithm over the 

KNLMS algorithm for system identification, forward 

prediction and non-stationary environment has been proved 

by computer simulat ions. The influence of different 

algorithm parameters has been investigated. It is also shown 

that the added complexity is rather small, therefore 

KPNLMS could prove a suitable choice for the investigated 

applications. Future work would be focused in adapting the 

proportionality idea to other kernel based algorithms and 

investigate their use in other applications. 
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