
 THE GAUSS-SEIDEL FAST AFFINE PROJECTION ALGORITHM

 Felix Albu1, Milan Tichy2, Nick Coleman3, Anthony Fagan1

1DSP Group, UCD, Belfield 4, Dublin, Ireland, felix_albu@ieee.org

2UTIA, Pod vodarenskou vezi 4, 182 08 Prague 8, Czech Republic, tichy@utia.cas.cz
3Dept EE, The University, Newcastle, NE1 7RU, UK, j.n.coleman@ncl.ac.uk

ABSTRACT

In this paper we propose a new stable Fast Affine

Projection algorithm based on Gauss -Seidel iterations

(GSFAP). We investigate its implementation using the

logarithmic number system (LNS) and compare it with

other two FAP algorithms. A method to simplify its

implementation is also proposed. We show that the 32-bit

or 20-bit LNS implementation of the GSFAP algorithm is

superior to those of other FAP algorithm. Its application

for acoustic echo cancellation is also investigated.

1. INTRODUCTION

Adaptive filtering is widely used in echo cancellation,

noise cancellation, system identification, active noise

control, channel equalization and in products like data

communications systems, network echo cancellers,

acoustic echo cancellers for hands-free telephones. The

performance of a specific adaptive filtering system is

affected by the choice of its adaptation algorithm. The

well-known normalized LMS (NLMS) algorithm has been

widely used but it has slow asymptotic convergence. The

affine projection algorithm (APA) [1] can be considered as

a generalization of the NLMS algorithm. However, its fast

version [2], when implemented with an embedded FRLS

(Fast Recursive Least Squares) algorithm suffers from

numerical instability [2]. The complexity of this algorithm

is NL 202 , where L is the length of the filter and N is

the projection order. Other difficulties are its memory

requirements and code overhead. Because of these

disadvantages using an FRLS procedure instead of the

standard RLS procedure do not necessarily represent the

most economical solution. Other forms of the standard

FAP that use sliding-window RLS type approach have

been proposed in [3] and [4]. These alternate FAP

algorithms lead to a more accurate estimation of the auto-

correlation matrix inverse but have no feedback

incorporated. If the estimations deviate from the accurate

value, the errors propagate to the next iterations, causing

the adaptive filter to fail sometimes [5]. A frequently

proposed remedy is to re-start periodically a new inversion

process. Even so, the numerical errors accumulate so fast

sometimes that the re-starting period would have to be

made very small. Therefore the complexity associated with

this procedure is high. Another improved FAP algorithm

using the conjugate gradient (CG) method to do the matrix

inversion was proposed in [5]. It was called CGFAP and it

was proved that it is stable and easy to implement in

comparison with other FAP algorithms. It uses a feedback

scheme so that the numerical errors do not accumulate. CG

is a non-linear programming method that seeks the

minimum of a quadratic cost function iteratively [6]. It has

been verified on floating point and fixed-point DSP

platforms including 16 and 24 bits ones [5]. In this paper

we study the behaviour of 20-bit or 32-bit LNS or FLOAT

implementations of the classical FAP algorithm [4], the

CGFAP algorithm and our new proposed GSFAP algorithm

(Gauss-Seidel Fast Affine Projection) algorithm. Also, we

propose a version for multi-input system and a filtered-x

system version of the GSFAP algorithm. We investigate its

performances for an acoustic echo cancellation and we

present the multi-input case and the filtered-x version.

In section 2 we briefly review the development of the

GSFAP algorithm. The logarithmic number system is

presented in section 3. The results of the implementation

of GSFAP algorithms using logarithmic arithmetic and

conventional 32-bit floating-point are provided in section

4. Section 5 concludes this work.

2. GSFAP ALGORITHM

We will use most of the notations and the definitions

presented in [5]. It is shown there that the matrix inversion

problem implied by FAP algorithms reduce to solving a set

of N linear equations bnPn R , where b is a N

vector with only one non-zero element, which is unity at

the top and nR is symmetric and positive definite.

Compared with the Jacobi method for the same class of

problem, the Gauss-Seidel method offers faster

mailto:felix_albu@ieee.org
mailto:tichy@utia.cas.cz
mailto:j.n.coleman@ncl.ac.uk

convergence. It uses updated values as soon as they are

available [7]. If we have to solve bx A , where A is an

NxN symmetric matrix, the Gauss-Seidel method computes

ii

ij ij

k

jij

k

jiji

k

i axaxabx /1)()(

. It is

known that if the matrix A is symmetric and positive

definite, the GS iteration is guaranteed to converge [7]. We

perform just one iteration and use as an initial estimation

for nP its previous value. The GSFAP algorithm is

presented in the following lines:

Initialisation

/1 1, ,1

 ,01 ,01 ,01

bP

sV

IR
 (1)

 Processing in sampling interval n

 LnLnnnnn
TT

 1RR

 (2)

Solve bnPn R using one GS iteration [7] (3)

 NnXNnVnV N 11 1 (4)

 nRnnXnVndne
TT ~

1 (5)

 nPnen (6)

 n
n

n

1

0
 (7)

Table 1. The GSFAP algorithm.

where I is an NxN identity matrix, is a regularization

factor that prevents the input auto-correlation matrix

 nR from becoming ill-conditioned. nR
~

is an N-1

vector that consist of the N-1 lower-most elements of the N

vector nR , which is the left column of nR . n is

an N-1 vector that consist of the N-1 upper-most elements

of the N vector n , the scalar nN 1 is the lower-

most element of n , nx is the input signal and

 nd is the desired output signal. The normalized step size

can be chosen within a range from 0.7 to 1. There is a wide

acceptable range for the regularised factor that prevents

the input auto-correlation matrix from becoming ill-

conditioned. The algorithm can be easily modified for

multi-input system case by using the way reported in [8].

The only difference is the shifting property of the input

vector n . Also, as it is shown in [8] the recursive

formula for step (2) becomes

)

 (1

LnLn

nnnn

T

ii

T

ii

i

RR

 (8)

 where n
i

 is the corresponding vector for the input i.

However, the added complexity is low. Unlike the algorithm

proposed in [8] that use the matrix inversion lemma twice

more for each added input the modified multi-input GSFAP

algorithm solve equation 3 with only one iteration.

Therefore the complexity of this step is reduced from

NiiN 44 2 divisions and multiplications (where i is the

number of the inputs) to only about
2N multiplications

and division. The same modifications proposed in [8] for

the two output filtered-x system can be applied in order to

obtain the filtered-x GSFAP version. Identical formulas

presented in [8] are needed to generate the outputs of the

corresponding filtered-x system. The total computation for

the CGFAP algorithm is 1922 2 NNL MACs and

1 division [5]. The GSFAP algorithm has

142 2 NNL MACs. It can be efficiently

implemented with only 1 division if efficiently implemented

because of nR special structure. GSFAP algorithm

could use higher values of the projection order than

CGFAP for the same computational effort because of its

reduced complexity (it has 252 NN MACs less than

CGFAP). Therefore it is suitable to be implemented with

most commercial DSPs. Also, we investigated the GSFAP

behavior in 32-bit or 20-bit logarithmic number system.

3. THE LOGARITHMIC NUMBER SYSTEM

Contemporary microprocessors perform real arithmetic

using the floating-point system. Although this method has

served well over the past decades, it suffers from a number

of disadvantages which render it unsuitable for very high-

speed computation and which inhibit its more widespread

use, for example in application-specific integrated circuits

or smaller microprocessor devices. Floating-point circuits

are large, complex and much slower than fixed-point units;

they require separate circuitry for the add/ subtract,

multiply, divide, and square-root operations; and all

floating-point operations are liable to a maximum half-bit

rounding error.

As an alternative to floating-point, the logarithmic

number system offers the potential to perform real

multiplication, division and square-root at fixed-point

speed and, in the case of multiply and divide, with no

rounding error at all. These advantages are, however,

offset by the problem of performing logarithmic addition

and subtraction. Hitherto this has been slower or less

accurate than floating-point, or has required very

cumbersome hardware. Following the way reported in [9]

and [10] it is now possible to perform logarithmic addition

and subtraction with speed and accuracy equivalent to

that of floating-point. In [10] we also described a 20-bit

LNS implementation in which the addition-subtraction

operation is performed with only 11 kbits of ROM and a

small amount of additional circuitry. In view of the

suitability of this scheme for an ASIC implementation, we

have used it in this paper to demonstrate the GSFAP

algorithm in practice. The 32-bit floating-point

representation consists of a sign, 8-bit biassed exponent,

and 23-bit mantissa. The LNS format is similar in structure

(see Fig. 1).

Fig. 1 IEEE standard single precision floating point

representation and the 32-bit LNS format

x + y ADD
Lz = Lx + log(1+2^(Ly-Lx)), Sz depends

on sizes of x,y

x - y SUB
Lz = Lx + log(1-2^(Ly-Lx)), Sz depends

on sizes of x,y

x * y MUL Lz = Lx + Ly, Sz = Sx OR Sy

x / y DIV Lz = Lx - Ly, Sz = Sx OR Sy

x̂ 2 SQU Lx << 1, Sz = Sx

x̂ 0.5 SQRT Lx >> 1, Sz = Sx

x̂ -1 RECIP Lz = Lx, Sz = ¬Sx

x̂ -0.5 RSQRT Lz = Lx >> 1, Sz = ¬Sx

Table 1. LNS Arithmetic Operations

The 'S' bit again indicates the sign of the real value

represented, with the remaining bits forming a 31-bit fixed

point word in which the size of the value is encoded as its

base-2 logarithm in 2's complement format. Since it is not

possible to represent the real value zero in the logarithmic

domain, the 'spare' (most negative) code in the 2's

complement fixed point part is used for this purpose, which

is convenient since smaller real values are represented by

more negative log-domain values. The chosen format

compares favorably against its floating-point counterpart,

having greater range and slightly smaller representation

error. A 20-bit LNS format is similar. It maintains the same

range as the 32-bit, but has precision reduced to 11

fractional bits. This is comparable to the 16-bit formats

used on commercial DSP devices. The 20-bit version

requires just 10,920 bits of lookup tables. The 32-bit LNS

implementation uses 321,536 bits of lookup tables. Table 1

presents the LNS arithmetic operations. More details about

the logarithmic number system are available at

http://www.ncl.ac.uk/eece/elm/.

4. SIMULATIONS

In these simulations the excitation signal is amplitude

normalised speech, sampled at 8 kHz, the echo path has

the length L, the projection number is N. The convergence

of the algorithms were compared by using the squared

norm of the difference between the LEM model and the

adaptive filter (in dB) [11]. The parameter for the all

FAP and NLMS algorithms was set to 1. The CGFAP

algorithm performs one division per sample. This division

is not performed and zero is assigned if the denominator is

not positive or lower than a specified threshold. This

threshold was fixed to
1010

in our simulations. The echo

path represents a room impulse response and is taken from

[11]. The projection order is N=10. We found that the 32-

bit GSFAP or CGFAP finite implementations (FLOAT or

LNS) have virtually identical performances (Figs. 2-3). As

expected, its initial convergence is better than that of the

NLMS algorithm (see Fig. 2). The figure shows some

losses in performances due to lower finite precision of 20-

bit versions in comparison with their 32-bit versions. Also,

our simulations shown that the CGFAP and GSFAP have

virtually identical performance. The classical FAP

algorithm uses a sliding window fast RLS algorithm that is

difficult to implement, memory intensive and potentially

numerically unstable. The 32-bit LNS or FLOAT

implementations of classical FAP algorithm (without the

restarting procedure) is unstable sometimes. In all cases

where the 32-bit or 20-bit FLOAT or LNS implementation of

Gay’s basic FAP algorithm were unstable, the GSFAP

algorithm implementations remained stable. As an iterative

method, GS method approaches nP with a delay and

this tracking error isn’t a problem since nR varies at a

http://www.ncl.ac.uk/eece/elm/

slower rate because NL . This delay allows us not to

update nP every sample.

Fig. 2. The learning curves for 32-bit and 20-bit

implementations of GSFAP and NLMS algorithms (32-bit

FLOAT and 32-bit LNS curves almost co-incidental,

L=1000, N=10)

Fig. 3. The learning curves for 32-bit and 20-bit LNS

implementations of GSFAP and CGFAP algorithms (32-bit

or 20-bit LNS curves almost co-incidental for both

algorithms, L=256, N=10, full echo path)

Figs. 4-5 show that updating nP every second up to

fourth sample does not have a significant effect on the

output error (Fig. 5 illustrate an example for the 20-bit

GSFAP implementation). The less updating iterative

method still approximates well the exact solution, although

the error and the number of iterations to converge are

higher (see Fig. 4). Therefore, the average number of

MACs and divisions is p times smaller for GS section

(1)/15(/2 2 NppNL MACs and 1division,

where p depends on L or N values, usually between 2 and

5). By updating nP every fifth sample, the difference is

increased to at least 22.48.1 2 NN MACs per

sample in comparison with CGFAP. Higher values of p are

possible, especially for high values of L or N. The

reduction in complexity is important.

Fig. 4. The error norm between the exact solution (double

precision) and the iterated solution of the linear system for

different values of p (p=1 and p=4)

Fig. 5. Convergence of 20-bit LNS GSFAP implementation

for different values of p (the curves are almost co-

incidental most of time)

For example, with L=1000 and N=10, an NLMS needs 2025

MACs (assuming 25 MACs for a division), the CGFAP

needs 2316 MACs. In comparison, the GSFAP needs 2154

MACs, while the GSFAP with p=2 needs 2119 MACs and

GSFAP with p=5 needs only 2092 MACs. Therefore in this

case, the increase is just about 2 % for GSFAP with p=5 in

comparison with NLMS. The GSFAP algorithm needs the

least amount of computation of the three algorithms as

long as 16N (see Fig. 6).

Fig. 6 Real time requirements of 3 FAPs

Fig. 7 Real time requirements of 3 FAPs (zoom for low

values of N)

The value of corresponding N grows as p grows (it is 55

for p=5). However, N=10 is good enough for most voice

applications. It can be seen from Fig. 7 that GSFAP

algorithm is superior to all other considered FAP

algorithms for this range of values for the projection order.

 The algorithm was run on the European Logarithmic

Microprocessor (ELM) simulator for the case L=1000 and

N=12. Design of the microprocessor is in the final stages of

layout, fabrication will be scheduled shortly, and a

physically-knowledgeable VHDL simulator indicates a

clock speed of 200 MHz. The inputs were quantized to 16

bits and the run took 12,286 cycles per timestep. That

would allow a 16.2 KHz sampling rate at 200 MHz.

5. CONCLUSIONS

It has been verified by simulations that the GSFAP and

its simplified forms is a stable alternative to the classical

FAP algorithm without the restarting procedure. The

GSFAP algorithms could provide a low-cost, efficient

solution for other voice applications. It is only marginally

more complex than NLMS and suitable for low-cost

processors. Their 20-bit LNS implementation appears to

offer a very attractive alternative to conventional

arithmetic if the precision is not a major issue. This 20-bit

implementation is particularly suitable for ASIC

implementation, requiring 11 kbits of ROM and a minimal

amount of additional circuitry for a complete

add/subtract/multiply/divide unit. Our future work will be

focused in implementing the GSFAP on FPGA following

the way reported in [12]. We also intend to investigate its

stability in 16-bit fixed-point precision and develop a multi-

channel GSFAP algorithm suitable for active noise control

systems.

6. ACKNOWLEDGMENTS

This work has been performed under the EU ESPRIT 33544

HSLA Long-term research project

(http://www.ncl.ac.uk/eece/elm/), coordinated by the

University of Newcastle, UK.

7. REFERENCES

[1] K. Ozeki, T. Umeda, 'An adaptive Filtering Algorithm

Using an Orthogonal Projection to an Affine Subspace and

its Properties,' Electronics and Communications in Japan,

Vol. 67-A, No.5, 1984

[2] S. Gay, S. Tavathia, 'The Fast Affine Projection

Algorithm', pp. 3023–3026, ICASSP’95 Proceedings

[3] Q.G. Liu, B. Champagne, and K. C. Ho, " On the use of a

modified FAP algorithm in subbands for acoustic echo

cancellation," in Proc. 7th IEEE DSP Workshop, Loen,

Norway, 1996, pp. 2570-2573

[4] M. Ghanassi, B. Champagne, "On the Fixed-Point

Implementation of a Subband Acoustic Echo Canceler

Based on a Modified FAP Algorithm", 1999 IEEE

Workshop on Acoustic Echo and Noise Control, Pocono

Manor, Pennsylvania, USA pp. 128-131

[5] Heping Ding, “A stable fast affine projection

adaptation algorithm suitable for low-cost processors”,

ICASSP 2000, Turkey, pp. 360-363

[6] David Luenberger, “Linear and Non-linear

Programming”, 2
nd

 Edition, Addison-Wesley, 1984.

http://www.ncl.ac.uk/eece/elm/

[7] R.Barrett, M. Berry, T. Chan, J. Demmel, J. Donato, J.

Dongarra, V. Eijkhout, R. Pozo, C. Romine, H. van der

Vorst, ‘Templates for the solutions of linear systems:

Building blocks for iterative methods’, SIAM, 1994

[8] Y. Kaneda, M. Tanaka, J. Kojima, 'An Adaptive

Algorithm with Fast Convergence for Multi-input Sound

Control', Active95, pp. 993-1004, Newport Beach,

California, USA.

[9] J.N. Coleman, E.I.Chester, 'A 32-bit Logarithmic

Arithmetic Unit and Its Performance Compared to Floating-

Point', 14th Symposium on Computer Arithmetic',

Adelaide, April 1999

[10] J.N.Coleman, E.Chester, C.Softley and J.Kadlec,

"Arithmetic on the European Logarithmic

Microprocessor", IEEE Trans. Comput. Special Edition on

Computer Arithmetic, July 2000, vol. 49, no. 7, pp. 702-715;

and erratum October 2000, vol. 49, no. 10, p.1152

[11] C. Breining, P. Dreitseitel, E. Hansler, A. Mader, B.

Nitsch, H. Pudeer, T. Scheirtler, G. Schmidt, and J.Tilp, '

Acoustic echo control- An application of very high order

adaptive filters,' IEEE Signal Processing Magazine, pp.

42-69, July 1999

[12] F. Albu, J. Kadlec, N. Coleman, A. Fagan, “Pipelined

Implementations of the Modified EF-LSL Algorithm”,

ICASSP2002, pp. 2681-2684, May 2002, Orlando, U.S.A

The matlab code and the speech file used in the Gauss-Seidel

Fast Affine Projection algorithm can be found at

http://falbu.50webs.com/fap/felix_gs.html

The reference for the paper is: F. Albu, Jiri Kadlec, Nick

Coleman, Anthony Fagan, “The Gauss-Seidel Fast Affine

Projection Algorithm”, IEEE Workshop, SIPS 2002, pp. 109-

114, San Diego, U.S.A, October 2002

http://falbu.50webs.com/fap/felix_gs.html

