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ABSTRACT 

 

In this paper we propose a new stable Fast Affine 

Projection algorithm based on Gauss -Seidel iterations 

(GSFAP). We investigate its implementation using the 

logarithmic number system (LNS) and compare it with 

other two FAP algorithms. A method to simplify its 

implementation is also proposed. We show that the 32-bit 

or 20-bit LNS implementation of the GSFAP algorithm is 

superior to those of other FAP algorithm. Its application 

for acoustic echo cancellation is also investigated. 

 

1. INTRODUCTION 

 

Adaptive filtering is widely used in echo cancellation, 

noise cancellation, system identification, active noise 

control, channel equalization and in products like data 

communications systems, network echo cancellers, 

acoustic echo cancellers for hands-free telephones. The 

performance of a specific adaptive filtering system is 

affected by the choice of its adaptation algorithm. The 

well-known normalized LMS (NLMS) algorithm has been 

widely used but it has slow asymptotic convergence. The 

affine projection algorithm (APA) [1] can be considered as 

a generalization of the NLMS algorithm. However, its fast 

version [2], when implemented with an embedded FRLS 

(Fast Recursive Least Squares) algorithm suffers from 

numerical instability [2]. The complexity of this algorithm 

is NL 202  , where L is the length of the filter and N is 

the projection order. Other difficulties are its memory 

requirements and code overhead. Because of these 

disadvantages using an FRLS procedure instead of the 

standard RLS procedure do not necessarily represent the 

most economical solution. Other forms of the standard 

FAP that use sliding-window RLS type approach have 

been proposed in [3] and [4]. These alternate FAP 

algorithms lead to a more accurate estimation of the auto-

correlation matrix inverse but have no feedback 

incorporated. If the estimations deviate from the accurate 

value, the errors propagate to the next iterations, causing 

the adaptive filter to fail sometimes  [5]. A frequently 

proposed remedy is to re-start periodically a new inversion 

process. Even so, the numerical errors accumulate so fast 

sometimes that the re-starting period would have to be 

made very small. Therefore the complexity associated with 

this procedure is high. Another improved FAP algorithm 

using the conjugate gradient (CG) method to do the matrix 

inversion was proposed in [5]. It was called CGFAP and it 

was proved that it is stable and easy to implement in 

comparison with other FAP algorithms. It uses a feedback 

scheme so that the numerical errors do not accumulate. CG 

is a non-linear programming method that seeks the 

minimum of a quadratic cost function iteratively [6]. It has 

been verified on floating point and fixed-point DSP 

platforms including 16 and 24 bits ones [5]. In this paper 

we study the behaviour of 20-bit or 32-bit LNS or FLOAT 

implementations of the classical FAP algorithm [4], the 

CGFAP algorithm and our new proposed GSFAP algorithm 

(Gauss-Seidel Fast Affine Projection) algorithm.  Also, we 

propose a version for multi-input system and a filtered-x 

system version of the GSFAP algorithm. We investigate its 

performances for an acoustic echo cancellation and we 

present the multi-input case and the filtered-x version. 

In section 2 we briefly review the development of the 

GSFAP algorithm. The logarithmic number system is 

presented in section 3. The results of the implementation 

of GSFAP algorithms using logarithmic arithmetic and 

conventional 32-bit floating-point are provided in section 

4. Section 5 concludes this work.  

 

2. GSFAP ALGORITHM  

 

We will use most of the notations and the definitions 

presented in [5]. It is shown there that the matrix inversion 

problem implied by FAP algorithms reduce to solving a set 

of N linear equations     bnPn R , where b is a N 

vector with only one non-zero element, which is  unity at 

the top and  nR is symmetric and positive definite. 

Compared with the Jacobi method for the same class of 

problem, the Gauss-Seidel method offers faster 
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convergence. It uses updated values as soon as they are 

available [7]. If we have to solve bx A , where A is an 

NxN symmetric matrix, the Gauss-Seidel method computes 
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. It is 

known that if the matrix A is symmetric and positive 

definite, the GS iteration is guaranteed to converge [7]. We 

perform just one iteration and use as an initial estimation 

for  nP its previous value. The GSFAP algorithm is 

presented in the following lines:   
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Solve     bnPn R using one GS iteration [7] (3) 
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Table 1. The GSFAP algorithm. 

 

where I is an NxN identity matrix,  is a regularization 

factor that prevents the input auto-correlation matrix 

 nR from becoming ill-conditioned.  nR
~

is an N-1 

vector that consist of the N-1 lower-most elements of the N 

vector  nR , which is the left column of  nR .  n is 

an N-1 vector that consist of the N-1 upper-most elements 

of the N vector  n , the scalar  nN 1 is the lower-

most element of  n ,  nx is the input signal and 

 nd is the desired output signal. The normalized step size 

can be chosen within a range from 0.7 to 1. There is a wide 

acceptable range for the regularised factor that prevents 

the input auto-correlation matrix from becoming ill-

conditioned. The algorithm can be easily modified for 

multi-input system case by using the way reported in [8]. 

The only difference is the shifting property of the input 

vector  n . Also, as it is shown in [8] the recursive 

formula for step (2) becomes  
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 where  n
i

 is the corresponding vector for the input i.  

However, the added complexity is low. Unlike the algorithm 

proposed in [8] that use the matrix inversion lemma twice 

more for each added input the modified multi-input GSFAP 

algorithm solve equation 3 with only one iteration. 

Therefore the complexity of this step is reduced from 

NiiN 44 2   divisions and multiplications (where i is the 

number of the inputs) to only about 
2N multiplications 

and division. The same modifications proposed in [8] for 

the two output filtered-x system can be applied in order to 

obtain the filtered-x GSFAP version. Identical formulas 

presented in [8] are needed to generate the outputs of the 

corresponding filtered-x system. The total computation for 

the CGFAP algorithm is 1922 2  NNL  MACs and 

1 division [5]. The GSFAP algorithm has 

142 2  NNL  MACs. It can be efficiently 

implemented with only 1 division if efficiently implemented 

because of  nR  special structure. GSFAP algorithm 

could use higher values of the projection order than 

CGFAP for the same computational effort because of its 

reduced complexity (it has 252  NN MACs less than 

CGFAP). Therefore it is suitable to be implemented with 

most commercial DSPs. Also, we investigated the GSFAP 

behavior in 32-bit or 20-bit logarithmic number system. 

 

 

3. THE LOGARITHMIC NUMBER SYSTEM  

 

Contemporary microprocessors perform real arithmetic 

using the floating-point system. Although this method has 

served well over the past decades, it suffers from a number 

of disadvantages which render it unsuitable for very high-

speed computation and which inhibit its more widespread 

use, for example in application-specific integrated circuits 

or smaller microprocessor devices. Floating-point circuits 

are large, complex and much slower than fixed-point units; 

they require separate circuitry for the add/ subtract, 

multiply, divide, and square-root operations; and all 

floating-point operations are liable to a maximum half-bit 

rounding error.  

As an alternative to floating-point, the logarithmic 

number system offers the potential to perform real 

multiplication, division and square-root at fixed-point 

speed and, in the case of multiply and divide, with no 

rounding error at all. These advantages are, however, 

offset by the problem of performing logarithmic addition 



and subtraction. Hitherto this has been slower or less 

accurate than floating-point, or has required very 

cumbersome hardware. Following the way reported in [9] 

and [10] it is now possible to perform logarithmic addition 

and subtraction with speed and accuracy equivalent to 

that of floating-point. In [10] we also described a 20-bit 

LNS implementation in which the addition-subtraction 

operation is performed with only 11 kbits of ROM and a 

small amount of additional circuitry. In view of the 

suitability of this scheme for an ASIC implementation, we 

have used it in this paper to demonstrate the GSFAP 

algorithm in practice. The 32-bit floating-point 

representation consists of a sign, 8-bit biassed exponent, 

and 23-bit mantissa. The LNS format is similar in structure 

(see Fig. 1).  
 

 
 

Fig. 1 IEEE standard single precision floating point 

representation and the 32-bit LNS format  

 

 

x + y ADD 
Lz = Lx + log(1+2^(Ly-Lx)), Sz depends 

on sizes of x,y 

x - y SUB 
Lz = Lx + log(1-2^(Ly-Lx)), Sz depends 

on sizes of x,y 

x * y MUL Lz = Lx + Ly, Sz = Sx OR Sy 

x / y DIV Lz = Lx - Ly, Sz = Sx OR Sy 

x̂ 2 SQU Lx << 1, Sz = Sx 

x̂ 0.5 SQRT Lx >> 1, Sz = Sx 

x̂ -1 RECIP Lz = Lx, Sz = ¬Sx 

x̂ -0.5 RSQRT Lz = Lx >> 1, Sz = ¬Sx 

 

Table 1. LNS Arithmetic Operations 

 

The 'S' bit again indicates the sign of the real value 

represented, with the remaining bits forming a 31-bit fixed 

point word in which the size of the value is encoded as its 

base-2 logarithm in 2's complement format. Since it is not 

possible to represent the real value zero in the logarithmic 

domain, the 'spare' (most negative) code in the 2's 

complement fixed point part is used for this purpose, which 

is convenient since smaller real values are represented by 

more negative log-domain values. The chosen format 

compares favorably against its floating-point counterpart, 

having greater range and slightly smaller representation 

error. A 20-bit LNS format is similar. It maintains the same 

range as the 32-bit, but has precision reduced to 11 

fractional bits. This is comparable to the 16-bit formats 

used on commercial DSP devices. The 20-bit version 

requires just 10,920 bits of lookup tables. The 32-bit LNS 

implementation uses 321,536 bits of lookup tables. Table 1 

presents the LNS arithmetic operations. More details about 

the logarithmic number system are available at 

http://www.ncl.ac.uk/eece/elm/. 

 
 

4. SIMULATIONS 

 

In these simulations the excitation signal is amplitude 

normalised speech, sampled at 8 kHz, the echo path has 

the length L, the projection number is N. The convergence 

of the algorithms were compared by using the squared 

norm of the difference between the LEM model and the 

adaptive filter (in dB) [11]. The parameter  for the all 

FAP and NLMS algorithms was set to 1. The CGFAP 

algorithm performs one division per sample. This division 

is not performed and zero is assigned if the denominator is 

not positive or lower than a specified threshold. This 

threshold was fixed to 
1010

in our simulations. The echo 

path represents a room impulse response and is taken from 

[11]. The projection order is N=10. We found that the 32-

bit GSFAP or CGFAP finite implementations (FLOAT or 

LNS) have virtually identical performances (Figs. 2-3). As 

expected, its initial convergence is better than that of the 

NLMS algorithm (see Fig. 2). The figure shows some 

losses in performances due to lower finite precision of 20-

bit versions in comparison with their 32-bit versions. Also, 

our simulations shown that the CGFAP and GSFAP have 

virtually identical performance. The classical FAP 

algorithm uses a sliding window fast RLS algorithm that is 

difficult to implement, memory intensive and potentially 

numerically unstable. The 32-bit LNS or FLOAT 

implementations of classical FAP algorithm (without the 

restarting procedure) is unstable sometimes. In all cases 

where the 32-bit or 20-bit FLOAT or LNS implementation of 

Gay’s basic FAP algorithm were unstable, the GSFAP 

algorithm implementations remained stable.  As an iterative 

method, GS method approaches  nP with a delay and 

this tracking error isn’t a problem since  nR  varies at a 
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slower rate because NL  . This delay allows us not to 

update  nP  every sample. 

 
Fig. 2. The learning curves for 32-bit and 20-bit 

implementations of GSFAP and NLMS algorithms (32-bit 

FLOAT and 32-bit LNS curves almost co-incidental, 

L=1000, N=10) 

 
Fig. 3. The learning curves for 32-bit and 20-bit LNS 

implementations of GSFAP and CGFAP algorithms (32-bit 

or 20-bit LNS curves almost co-incidental for both 

algorithms, L=256, N=10, full echo path) 

 

Figs. 4-5 show that updating  nP  every second up to 

fourth sample does not have a significant effect on the 

output error (Fig. 5 illustrate an example for the 20-bit 

GSFAP implementation). The less updating iterative 

method still approximates well the exact solution, although 

the error and the number of iterations to converge are 

higher (see Fig. 4). Therefore, the average number of 

MACs and divisions is p times smaller for GS section 

( 1)/15(/2 2  NppNL  MACs and 1division, 

where p depends on L or N values, usually between 2 and 

5). By updating  nP  every fifth sample, the difference is 

increased to at least 22.48.1 2  NN MACs per 

sample in comparison with CGFAP. Higher values of p are 

possible, especially for high values of L or N. The 

reduction in complexity is important. 

 
Fig.  4. The error norm between the exact solution (double 

precision) and the iterated solution of the linear system for 

different values of p (p=1 and p=4) 

 

Fig. 5. Convergence of 20-bit LNS GSFAP implementation 

for different values of p (the curves are almost co-

incidental most of time) 

 

For example, with L=1000 and N=10, an NLMS needs 2025 

MACs (assuming 25 MACs for a division), the CGFAP 

needs 2316 MACs. In comparison, the GSFAP needs 2154 

MACs, while the GSFAP with p=2 needs 2119 MACs and 

GSFAP with p=5 needs only 2092 MACs. Therefore in this 

case, the increase is just about 2 % for GSFAP with p=5 in 

comparison with NLMS. The GSFAP algorithm needs the 



least amount of computation of the three algorithms  as 

long as 16N (see Fig. 6). 

 
Fig. 6 Real time requirements of 3 FAPs 

 

 
Fig. 7 Real time requirements of 3 FAPs (zoom for low 

values of N)  

 

The value of corresponding N grows as p grows (it is 55 

for p=5). However, N=10 is good enough for most voice 

applications. It can be seen from Fig. 7 that GSFAP 

algorithm is superior to all other considered FAP 

algorithms for this range of values for the projection order.  

     The algorithm was run on the European Logarithmic 

Microprocessor (ELM) simulator for the case L=1000 and 

N=12. Design of the microprocessor is in the final stages of 

layout, fabrication will be scheduled shortly, and a 

physically-knowledgeable VHDL simulator indicates a 

clock speed of 200 MHz. The inputs were quantized to 16 

bits and the run took 12,286 cycles per timestep. That 

would allow a 16.2 KHz sampling rate at 200 MHz. 

 

5. CONCLUSIONS 

 

It has been verified by simulations that the GSFAP and 

its simplified forms is a stable alternative to the classical 

FAP algorithm without the restarting procedure. The 

GSFAP algorithms could provide a low-cost, efficient 

solution for other voice applications. It is only marginally 

more complex than NLMS and suitable for low-cost 

processors. Their 20-bit LNS implementation appears to 

offer a very attractive alternative to conventional 

arithmetic if the precision is not a major issue. This 20-bit 

implementation is particularly suitable for ASIC 

implementation, requiring 11 kbits of ROM and a minimal 

amount of additional circuitry for a complete 

add/subtract/multiply/divide unit. Our future work will be 

focused in implementing the GSFAP on FPGA following 

the way reported in [12]. We also intend to investigate its 

stability in 16-bit fixed-point precision and develop a multi-

channel GSFAP algorithm suitable for active noise control 

systems.  

 

 

6. ACKNOWLEDGMENTS  

 

This work has been performed under the EU ESPRIT 33544 

HSLA Long-term research project 

(http://www.ncl.ac.uk/eece/elm/), coordinated by the 

University of Newcastle, UK. 

 

7. REFERENCES 

 

[1] K. Ozeki, T. Umeda, 'An adaptive Filtering Algorithm 

Using an Orthogonal Projection to an Affine Subspace and 

its Properties,' Electronics and Communications in Japan, 

Vol. 67-A, No.5, 1984 

[2] S. Gay, S. Tavathia, 'The Fast Affine Projection 

Algorithm', pp. 3023–3026, ICASSP’95 Proceedings 

[3] Q.G. Liu, B. Champagne, and K. C. Ho, " On the use of a 

modified FAP algorithm in subbands for acoustic echo 

cancellation," in Proc. 7th IEEE DSP Workshop, Loen, 

Norway, 1996, pp. 2570-2573 

[4] M. Ghanassi, B. Champagne, "On the Fixed-Point 

Implementation of a Subband Acoustic Echo Canceler 

Based on a Modified FAP Algorithm", 1999 IEEE 

Workshop on Acoustic Echo and Noise Control, Pocono 

Manor, Pennsylvania, USA pp. 128-131 

[5] Heping Ding, “A stable fast affine projection 

adaptation algorithm suitable for low-cost processors”, 

ICASSP 2000, Turkey, pp. 360-363 

[6] David Luenberger, “Linear and Non-linear 

Programming”, 2
nd

 Edition, Addison-Wesley, 1984.  

http://www.ncl.ac.uk/eece/elm/


[7] R.Barrett, M. Berry, T. Chan, J. Demmel, J. Donato, J. 

Dongarra, V. Eijkhout, R. Pozo, C. Romine, H. van der 

Vorst, ‘Templates for the solutions of linear systems: 

Building blocks for iterative methods’, SIAM, 1994 

[8] Y. Kaneda, M. Tanaka, J. Kojima, 'An Adaptive 

Algorithm with Fast Convergence for Multi-input Sound 

Control', Active95, pp. 993-1004, Newport Beach, 

California, USA. 

[9] J.N. Coleman, E.I.Chester, 'A 32-bit Logarithmic 

Arithmetic Unit and Its Performance Compared to Floating-

Point', 14th Symposium on Computer Arithmetic', 

Adelaide, April 1999 

[10] J.N.Coleman, E.Chester, C.Softley and J.Kadlec, 

"Arithmetic on the European Logarithmic 

Microprocessor", IEEE Trans. Comput. Special Edition on 

Computer Arithmetic, July 2000, vol. 49, no. 7, pp. 702-715; 

and erratum October 2000, vol. 49, no. 10, p.1152  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

[11] C. Breining, P. Dreitseitel, E. Hansler, A. Mader, B. 

Nitsch, H. Pudeer, T. Scheirtler, G. Schmidt, and J.Tilp, ' 

Acoustic echo control- An application of very high order 

adaptive filters,' IEEE Signal Processing Magazine, pp. 

42-69, July 1999 

[12] F. Albu, J. Kadlec, N. Coleman, A. Fagan, “Pipelined 

Implementations of the Modified EF-LSL Algorithm”, 

ICASSP2002, pp. 2681-2684, May 2002, Orlando, U.S.A 

 

 

The matlab code and the speech file used in the Gauss-Seidel 

Fast Affine Projection algorithm can be found at 

http://falbu.50webs.com/fap/felix_gs.html 

 

The reference for the paper is: F. Albu, Jiri Kadlec, Nick 

Coleman, Anthony Fagan, “The Gauss-Seidel Fast Affine 

Projection Algorithm”, IEEE Workshop, SIPS 2002, pp. 109-

114, San Diego, U.S.A, October 2002 

http://falbu.50webs.com/fap/felix_gs.html

