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Abstract. We present an implementation of a complete RLS Lattice and 

Normalised RLS Lattice cores for Virtex. The cores accept 24-bit fixed point 

inputs and produce 24-bit fixed point prediction error. Internally, the 

computations are based on 32bit logarithmic arithmetic. On Virtex XCV2000E-

6, it takes 22% and 27% of slices respectively and performs at 45 MHz. The 
cores outperform (4-5 times) the standard DSP solution based on 32 bit floating 

point TMS320C3x/4x 50MHz processors.  

Introduction 

The lattice algorithms solve the least-squares problem in a recursive form. They 

require less arithmet ic operations than RLS (order N) [2]. They offer a number of 

advantages over conventional LMS t ransversal algorithms such us faster rate of 

convergence, modular structure and insensitivity to variations in the eigenvalue 

spread of the input correlation matrix. Another feature of the lattice-based algorithms 

is their good performance when implemented in fin ite-precision arithmet ic [2]. 

However, the high computational load of division or square-root operations is one of 

the reasons why these algorithms are usually not used in real-time applications. They 

need floating point-like precision, and this has been a severe restriction for FPGA use. 

FPGA offers a viable alternative to programmable DSP processors or ASIC for some 

applications (see for example [7,8]). As an alternative to floating-point, the 

logarithmic number system offers the potential to perform real multiplication, d ivision 

and square-root at fixed-po int speed and, in the case of multiply and div ide, with no 

rounding error at all. These advantages are, however, offset by the problem of 

performing logarithmic addition and subtraction. Hitherto this has been slower or less 

accurate than floating-point, or has required very cumbersome hardware. Following 

the discovery of new arithmetic techniques at Newcastle, however, it is possible to 

perform logarithmic addition and subtraction with speed and accuracy equivalent to 

that of floating-point [1,3]. The patented solution developed by the HSLA project 
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team under Dr. Coleman, yields a drastic reduction in the size of the look-up tables 

required compared to those needed for conventional linear interpolation of both 

functions . This is achieved by the parallel evaluation of a linear approximant and an 

error correction term. Furthermore, it has been shown that a modified form of LNS 

operation is possible, which delivers considerably better precision in applications 

involving underflow. This “Extended Precision LNS” is described in [4]. Coleman's 

approach leads to a suitable solution for the FPGA implementation. It avoids the need 

for a barrel shifter, implementation of which  is area-costly and ineffective in an 

FPGA. The LNS ALU provides one of the first hardware solutions to this problem.  

For a description of the ALU see [5]. We present results of the implementation based 

on  this 32-bit logarithmic ALU designed in Handel C for the Celoxica DK1 toolset 

[6]. The core takes just 8% of the XILINX Virtex XCV2000E-6 device. It operates at 

53MHz and implements all the basic operations of logarithmic arithmetic (ADD, 

SUB, MUL, DIV and SQRT), with precision equal to or better than:  

 the standard IEEE 32-b it floating point used in new DSPs  

 the TI 32-b it floating point standard used in the TMS320C30/C40 devices. 

The block diagram for our implementation is presented in Fig.1. In the next two 

sections we present the Lattice RLS algorithm based on A Posteriori errors and the 

Normalised A Posteriori Error Lattice RLS algorithm. 

 

 

 

 

Fig. 1. Block diagram of LNS Lattice implementation 

 

Lattice RLS Algorithm 

Table 1 presents the Lattice RLS (LRLS) A lgorithm based on A Posteriori errors [2]:  
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Table 1. The Lattice RLS Algorithm based on A Posteriori Errors.  

 ike f ,  represents the instantaneous a posteriori forward prediction error,  ikeb ,  

represent the instantaneous a posteriori backward prediction erro r,  ikf ,
min

 and 

 ikb ,
min

 are the minimum in least-squares sense of the forward and backward 

prediction errors respectively.  The coefficients  ikk f , and  ikkb , are called the 



forward and backward reflection coefficients.  ik,  is a conversion factor between 

a priori and a posteriori errors and  kvi
are the feedforward multiplier coefficients.  

The Normalised  LRLS Algorithm 

Table 2 presents the Normalised A Posteriori Error LRLS Algorithm [2] : 
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Table 2. The Normalised A Posteriori Error LRLS Algorithm  

The reconstructed  1, Nke  is the standard prediction error and it must be up to 

the numerical rounding identical to the prediction error produced by the normal RLS 

lattice. Only this reconstructed prediction error can be reasonably compared with the 

prediction error produced by other RLS algorithms.   
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The "chain" of 2 x N supplementary multip lications can be performed by Extended -

LNS. Only the final single re-scaling needs the standard LNS multiplication and 

returns us to the "real" domain.  

Results 

The Lattice RLS Algorithm based on A Posteriori Errors and the Normalised A 

Posteriori Error LRLS Algorithm were used to identify a system with impulse 

response h=[0.1 0.3 0.0 –0.2 –0.4 –0.7 –0.4 –0.2]. The input signal was generated as a 

first-order AR process with the eigenvalue spread of the correlation matrix of 20 [2]. 

The forgetting factor was 96.0 and the parameter 01.0 . The standard 

deviation of the input was 1 and the standard deviation of measurement noise was 

0.01. Results for the double implementations of LRLS and NLRLS are identical. 

However, the fin ite implementations have slightly different performances (Fig.2).  

In order to compare the numerical properties of the different implementations we 

used a procedure similar to that described in [4]. An input noise signal was generated. 

Starting from t ime 500 the noise signal is changed to a sine, thereby creating non -

persistent excitation and hence poorly conditioned operation. An accurate standard for 

comparison of the outputs was obtained by presenting this input data to the IEEE 

double precision floating-point versions of each filter.  

Figs. 3-4 present the absolute sum of errors for the output results of the 

identification of a 30th order FIR regression model by this filter, with exp. weighting 

factor 0.9. The two algorithms have different numerical properties and each has errors 

in a different range [2]. Some time after the start of non-persistent excitation at time 

500, however, each implementation could become unstable, with the accumulation of 

successively larger erro rs. We notice that FLOAT-LRLS and the LNS-LRLS errors 

start to grow very much after 100 samples of the non-persistent excitation. In the 

same time ELNS-NLRLS and LNS-NLRLS start to drift at about 200 samples  of the 

non-persistent excitation. These results are comparable to the RMGS and NL RMGS 

RLS reported in [4]. Therefore LNS enables at no substantial cost to go to the 

normalised version of the algorithm and gain the robustness in the comparison with 

the un-normalised version. The normalised lattice is particularly suitable for extended 

LNS implementation because of its normalised internal variables.   

 



Fig. 2. The learning curves for FLOAT 32bit and LNS implementations of Lattice RLS and 

Normalised Lattice RLS Algorithms 

 

Fig. 3. The absolute sum of errors for FLOAT and LNS implementation of the Lattice RLS 

Algorithm. 



 

Fig. 4. The absolute sum of errors for ELNS, FLOAT and LNS implementation of the 

Normalised Lattice RLS Algorithm 

Comparison of LNS FPGA implementation with TMS320C30/C40 

The instruction counts for 8
-th

 order filters are presented in Tables 4-6. In counting 

FLP operations, additions and subtractions were recorded from LRLS or NLRLS 

algorithm equations. The number of multip licat ions and divisions is about twice the 

number of additions and subtraction operations. Therefore these algorithms are 

suitable for LNS implementation. Clock cycles for each type of operation are 

presented in Table 3. int2* and *2int indicate the functions for conversion to/from int 

domain to/from log or floating point domain. The conversion to/from log domain is 

based on evaluation of the rational polynomial approximation of log and antilog in the 

range (-1,1) conversion. The log ALU is used for the conversion. For details see [5].  

 
 add sub mul div Sqrt Int2* *2int 

C3X/4X 4 4 4 62 92 2 2 

Log 10 10 1 1 1 100 60 

Table 3. Comparison of LNS and FLOAT execution time (clock cycles)  

The LNS multiplication, div ision and square-root operations are implemented by 

fixed-point addition, subtraction, right shift and are extremely efficient. LNS addition 

and subtraction, implemented as described in [1], requires a number of table-lookups. 

In the current arrangement these tables are located in four external banks of SRAM, 

and hence require several cycles to access [5]. Future FPGA implementations will use 



the on-chip RAM, which will yield a substantial decrease in the latency of these 

operations. 

 
 add sub mul div int2* *2int Cycles Speedup 

C3X/4X 17 48 74 64 2 1 4,530 1  

Log 21 44 74 64 2 1 1,048 3.9 

Log/par 21 44 24 16 2 1   950 4.3  

Table 4. Clock cycle counts (LRLS algorithm) TMS320C30/40 in comparison with FPGA.  

 

 add sub mul Div sqrt int2* *2int Cycles Speedup 

C3X/4X 18 72 167 26 50 2 1 7,246 1  

Log 24 66 167 26 50 2 1 1,403 4.6  

Log/par 24 66 48 0 16 2 1 1,224 5.3  

 

Table 5. Clock cycle counts (NLRLS algorithm) TMS320C30/40 in comparison with FPGA. 

Tables 4-5 compare the clock cycles for processing of one input/output sample for 

the 8-th order filter.  

The last line of the tables, denoted Log/par, indicates additional savings and 

speedup gained by parallel execution of mul, div and sqrt operations in the FPGA. 

This is illustrated in the following example.  

par 

{ lsub(lxifmin[lj], ltemp2, lxifmin[lj+1],zsl);  

   { ltemp5= lm(lkappab[lj], lef);  

     ltemp6= lm(lkappaf[lj], loldeb[lj]);           

     ltemp1=ld(leb[lj], lxibmin[lj]);  

     } 

  } 

This small section of code is taken from the Handel C implementation. It outlines the 

style of parallel programming of the LNS ALU. The subtract operation lsub() 

executes in parallel with 2 instances of the HW macros for logarithmic mult iplication 

lm() and one for division ld(). It is possible, because the log. mult is just 32bit 

integer add and divide is 32b it integer subtract. Macro lsub()is in fact an interface 

to a parallel HW module. The HW receives operands through a set of channels. After 

9 to 12 clock cycles, the 32bit LNS results and status are returned by a second set of 



channels. We “programme” the Lattice algorithm as a HW module communicating 

with the large single LNS ADD/SUB module. All other operations are created in 

parallel, distributed logic. Our Virtex XCV2000E-6 implementations of LRLS and 

NLRLS algorithms work at 45MHz clocks and takes 22% and 27% of slices 

respectively on this device.  

Algorithms were coded in Handel-C 2.1 and Celoxica DK1. The reported 

performance has been achieved by this path: 

1. Celoxica DK1 (using the Handel C2.1 compatible code) with export to VHDL.  

2. Synplify 5.3 from Synplicity to create EDIF.  

3. XILINX Alliance 3.3i tools to place and route from the EDIF netlist for the 

FPGAs. 

4. The Virtex XCV2000E-6 on the RC1000 board [6] was used for the 

implementation.  

5. MSVC code was used for interfacing of RC1000 board to Matlab. See [5] for 

details.  

Conclusions 

The LNS implementation of the LRLS algorithms in an FPGA offers better speed 

than C30/C40 DSP floating-point and provides a low-cost, efficient solution for 

different system-on-chip applications. The resulting RLS Lattice cores operate with 

24-bit precision fixed point input/output signals. Therefore, the internal conversion to 

the log domain and the internal LNS operations can be hidden from the user. Our 

Virtex XCV2000E-6 implementation works with 45MHz clocks and if compared with 

50MHz TI C30/C40 DSP, it provides significant speedup without any loss of 

precision.  

The analyzed 8-th order Normalised RLS Lattice filter works on this FPGA device 

at 36.7 kHz, wh ile 50MHz C30/C40 allows just 6.9 kHz. This gives the sustained 

performance 12 Mflops for Virtex (input domain conversion is counted just one 

operation) and 2.3 Mflops for C30. Both RLS lattice algorithms have efficient LNS 

implementation because of numerous divisions or square-roots operations. The un-

normalised LRLS algorithm is less complex than the normalized one. However, the 

sampling rate is just about 20% faster (47kHz for the same FPGA). We have 

demonstrated that the Normalised RLS Lattice has superior robustness to the non-

persistent excitation. These algorithms could be used in applications like echo 

cancellation, noise reduction, channel equalizat ion. Our future work will be focused 

in implementing these algorithms using mult iple p ipelined logarithmic ALUs.  
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