
Implementation of (Normalised) RLS Lattice on Virtex

Felix Albu
1
, Jiri Kadlec

2
, Chris Soft ley

3
, Rudolf Matousek

2
, Antonin Hermanek

2

Nick Coleman
3
, Anthony Fagan

1

1University College Dublin, Ireland

felix@ee.ucd.ie
2UTIA Prague, Czech Republic

Kadlec@utia.cas.cz
3University of Newcastle upon Tyne, UK

C.I.Softley@ncl.ac.uk

Abstract. We present an implementation of a complete RLS Lattice and

Normalised RLS Lattice cores for Virtex. The cores accept 24-bit fixed point

inputs and produce 24-bit fixed point prediction error. Internally, the

computations are based on 32bit logarithmic arithmetic. On Virtex XCV2000E-

6, it takes 22% and 27% of slices respectively and performs at 45 MHz. The
cores outperform (4-5 times) the standard DSP solution based on 32 bit floating

point TMS320C3x/4x 50MHz processors.

Introduction

The lattice algorithms solve the least-squares problem in a recursive form. They

require less arithmet ic operations than RLS (order N) [2]. They offer a number of

advantages over conventional LMS t ransversal algorithms such us faster rate of

convergence, modular structure and insensitivity to variations in the eigenvalue

spread of the input correlation matrix. Another feature of the lattice-based algorithms

is their good performance when implemented in fin ite-precision arithmet ic [2].

However, the high computational load of division or square-root operations is one of

the reasons why these algorithms are usually not used in real-time applications. They

need floating point-like precision, and this has been a severe restriction for FPGA use.

FPGA offers a viable alternative to programmable DSP processors or ASIC for some

applications (see for example [7,8]). As an alternative to floating-point, the

logarithmic number system offers the potential to perform real multiplication, d ivision

and square-root at fixed-po int speed and, in the case of multiply and div ide, with no

rounding error at all. These advantages are, however, offset by the problem of

performing logarithmic addition and subtraction. Hitherto this has been slower or less

accurate than floating-point, or has required very cumbersome hardware. Following

the discovery of new arithmetic techniques at Newcastle, however, it is possible to

perform logarithmic addition and subtraction with speed and accuracy equivalent to

that of floating-point [1,3]. The patented solution developed by the HSLA project

mailto:felix@ee.ucd.ie
mailto:Kadlec@utia.cas.cz
mailto:C.I.Softley@ncl.ac.uk

team under Dr. Coleman, yields a drastic reduction in the size of the look-up tables

required compared to those needed for conventional linear interpolation of both

functions . This is achieved by the parallel evaluation of a linear approximant and an

error correction term. Furthermore, it has been shown that a modified form of LNS

operation is possible, which delivers considerably better precision in applications

involving underflow. This “Extended Precision LNS” is described in [4]. Coleman's

approach leads to a suitable solution for the FPGA implementation. It avoids the need

for a barrel shifter, implementation of which is area-costly and ineffective in an

FPGA. The LNS ALU provides one of the first hardware solutions to this problem.

For a description of the ALU see [5]. We present results of the implementation based

on this 32-bit logarithmic ALU designed in Handel C for the Celoxica DK1 toolset

[6]. The core takes just 8% of the XILINX Virtex XCV2000E-6 device. It operates at

53MHz and implements all the basic operations of logarithmic arithmetic (ADD,

SUB, MUL, DIV and SQRT), with precision equal to or better than:

 the standard IEEE 32-b it floating point used in new DSPs

 the TI 32-b it floating point standard used in the TMS320C30/C40 devices.

The block diagram for our implementation is presented in Fig.1. In the next two

sections we present the Lattice RLS algorithm based on A Posteriori errors and the

Normalised A Posteriori Error Lattice RLS algorithm.

Fig. 1. Block diagram of LNS Lattice implementation

Lattice RLS Algorithm

Table 1 presents the Lattice RLS (LRLS) A lgorithm based on A Posteriori errors [2]:

Initialisation

Do for Ni ,...,1,0

          iiii d

f

d

bD ,1,1 ,0,1,1
minmin

    0,1 ,1,1  iei b

Input

Conversion

 INT to LOG

Output

Conversion

 LOG to

INT z-1

Lattice

Do for 0k

           kdkekxkekek fb  0,,0,0, ,10,

       0,10,0,
minminmin

2  kkxkk d

f

d

f

d

b 

For each 0k , do for Ni ,...,1,0

   
   

 ik

ikeike
ikik

fb

,1

,,1
,1,









   
 
 ik

ike
ikik

d

b

b

,

,
,1,

min

2


 

 
 
 ik

ik
ikk

d

f

b
,

,
,

min





 
 
 ik

ik
ikk

d

b

f
,1

,
,

min







       ikeikkikeike fbbb ,,,11, 

       ikeikkikeike bfff ,1,,1, 

   
 
 ik

ik
ikik

d

f

d

b

d

b
,

,
,11,

min

minmin

2




 

   
 
 ik

ik
ikik

d

b

d

f

d

f
,1

,
,1,

min

minmin

2








Feed-forward Filtering

   
   

 ik

ikeike
ikik b

DD
,

,,
,1,


 

 
 
 ik

ik
kv

d

b

D
i

,

,

min





       ikekvikeike bi ,,1, 

Table 1. The Lattice RLS Algorithm based on A Posteriori Errors.

 ike f , represents the instantaneous a posteriori forward prediction error,  ikeb ,

represent the instantaneous a posteriori backward prediction erro r,  ikf ,
min

 and

 ikb ,
min

 are the minimum in least-squares sense of the forward and backward

prediction errors respectively. The coefficients  ikk f , and  ikkb , are called the

forward and backward reflection coefficients.  ik, is a conversion factor between

a priori and a posteriori errors and  kvi
are the feedforward multiplier coefficients.

The Normalised LRLS Algorithm

Table 2 presents the Normalised A Posteriori Error LRLS Algorithm [2] :

Initialisation

Do for Ni ,...,1,0

      0,1 ,0,1 ,0,1  ieii bD

      11 22

dx

Do for 0k

       energy) signal(Input 1 222 kxkk xx  

       energy) signal (Reference 1 222 kdkk dd  

       

     kkdke

kkxkeke

d

xfb





/0,

/0,0,





For each 0k do for Ni ,...,1,0

             

 
     

     

 
     

     ikeik

ikeikike
ike

ikeik

ikeikike
ike

ikeikeikeikeikik

b

bf

f

f

fb

b

fbfb

,11,1

,1,,
1,

,1,1

,,,1
1,

,,1,1,11,1,

22

22

22























 Feedforward filter

             

 
     

      ikeikike
ikike

ike

ikeikeikeikeikik

bD

Db

bbDD

,,,
,1,1

1
1,

,,,1,1,1,

22

22













Table 2. The Normalised A Posteriori Error LRLS Algorithm

The reconstructed  1, Nke is the standard prediction error and it must be up to

the numerical rounding identical to the prediction error produced by the normal RLS

lattice. Only this reconstructed prediction error can be reasonably compared with the

prediction error produced by other RLS algorithms.

           kjkjkeNkeNke d

N

j

N

j

Db  












  

 0 0

22 ,1,11,1,

(1)

The "chain" of 2 x N supplementary multip lications can be performed by Extended -

LNS. Only the final single re-scaling needs the standard LNS multiplication and

returns us to the "real" domain.

Results

The Lattice RLS Algorithm based on A Posteriori Errors and the Normalised A

Posteriori Error LRLS Algorithm were used to identify a system with impulse

response h=[0.1 0.3 0.0 –0.2 –0.4 –0.7 –0.4 –0.2]. The input signal was generated as a

first-order AR process with the eigenvalue spread of the correlation matrix of 20 [2].

The forgetting factor was 96.0 and the parameter 01.0 . The standard

deviation of the input was 1 and the standard deviation of measurement noise was

0.01. Results for the double implementations of LRLS and NLRLS are identical.

However, the fin ite implementations have slightly different performances (Fig.2).

In order to compare the numerical properties of the different implementations we

used a procedure similar to that described in [4]. An input noise signal was generated.

Starting from t ime 500 the noise signal is changed to a sine, thereby creating non -

persistent excitation and hence poorly conditioned operation. An accurate standard for

comparison of the outputs was obtained by presenting this input data to the IEEE

double precision floating-point versions of each filter.

Figs. 3-4 present the absolute sum of errors for the output results of the

identification of a 30th order FIR regression model by this filter, with exp. weighting

factor 0.9. The two algorithms have different numerical properties and each has errors

in a different range [2]. Some time after the start of non-persistent excitation at time

500, however, each implementation could become unstable, with the accumulation of

successively larger erro rs. We notice that FLOAT-LRLS and the LNS-LRLS errors

start to grow very much after 100 samples of the non-persistent excitation. In the

same time ELNS-NLRLS and LNS-NLRLS start to drift at about 200 samples of the

non-persistent excitation. These results are comparable to the RMGS and NL RMGS

RLS reported in [4]. Therefore LNS enables at no substantial cost to go to the

normalised version of the algorithm and gain the robustness in the comparison with

the un-normalised version. The normalised lattice is particularly suitable for extended

LNS implementation because of its normalised internal variables.

Fig. 2. The learning curves for FLOAT 32bit and LNS implementations of Lattice RLS and

Normalised Lattice RLS Algorithms

Fig. 3. The absolute sum of errors for FLOAT and LNS implementation of the Lattice RLS

Algorithm.

Fig. 4. The absolute sum of errors for ELNS, FLOAT and LNS implementation of the

Normalised Lattice RLS Algorithm

Comparison of LNS FPGA implementation with TMS320C30/C40

The instruction counts for 8
-th

 order filters are presented in Tables 4-6. In counting

FLP operations, additions and subtractions were recorded from LRLS or NLRLS

algorithm equations. The number of multip licat ions and divisions is about twice the

number of additions and subtraction operations. Therefore these algorithms are

suitable for LNS implementation. Clock cycles for each type of operation are

presented in Table 3. int2* and *2int indicate the functions for conversion to/from int

domain to/from log or floating point domain. The conversion to/from log domain is

based on evaluation of the rational polynomial approximation of log and antilog in the

range (-1,1) conversion. The log ALU is used for the conversion. For details see [5].

 add sub mul div Sqrt Int2* *2int

C3X/4X 4 4 4 62 92 2 2

Log 10 10 1 1 1 100 60

Table 3. Comparison of LNS and FLOAT execution time (clock cycles)

The LNS multiplication, div ision and square-root operations are implemented by

fixed-point addition, subtraction, right shift and are extremely efficient. LNS addition

and subtraction, implemented as described in [1], requires a number of table-lookups.

In the current arrangement these tables are located in four external banks of SRAM,

and hence require several cycles to access [5]. Future FPGA implementations will use

the on-chip RAM, which will yield a substantial decrease in the latency of these

operations.

 add sub mul div int2* *2int Cycles Speedup

C3X/4X 17 48 74 64 2 1 4,530 1

Log 21 44 74 64 2 1 1,048 3.9

Log/par 21 44 24 16 2 1 950 4.3

Table 4. Clock cycle counts (LRLS algorithm) TMS320C30/40 in comparison with FPGA.

 add sub mul Div sqrt int2* *2int Cycles Speedup

C3X/4X 18 72 167 26 50 2 1 7,246 1

Log 24 66 167 26 50 2 1 1,403 4.6

Log/par 24 66 48 0 16 2 1 1,224 5.3

Table 5. Clock cycle counts (NLRLS algorithm) TMS320C30/40 in comparison with FPGA.

Tables 4-5 compare the clock cycles for processing of one input/output sample for

the 8-th order filter.

The last line of the tables, denoted Log/par, indicates additional savings and

speedup gained by parallel execution of mul, div and sqrt operations in the FPGA.

This is illustrated in the following example.

par

{ lsub(lxifmin[lj], ltemp2, lxifmin[lj+1],zsl);

 { ltemp5= lm(lkappab[lj], lef);

 ltemp6= lm(lkappaf[lj], loldeb[lj]);

 ltemp1=ld(leb[lj], lxibmin[lj]);

 }

 }

This small section of code is taken from the Handel C implementation. It outlines the

style of parallel programming of the LNS ALU. The subtract operation lsub()

executes in parallel with 2 instances of the HW macros for logarithmic mult iplication

lm() and one for division ld(). It is possible, because the log. mult is just 32bit

integer add and divide is 32b it integer subtract. Macro lsub()is in fact an interface

to a parallel HW module. The HW receives operands through a set of channels. After

9 to 12 clock cycles, the 32bit LNS results and status are returned by a second set of

channels. We “programme” the Lattice algorithm as a HW module communicating

with the large single LNS ADD/SUB module. All other operations are created in

parallel, distributed logic. Our Virtex XCV2000E-6 implementations of LRLS and

NLRLS algorithms work at 45MHz clocks and takes 22% and 27% of slices

respectively on this device.

Algorithms were coded in Handel-C 2.1 and Celoxica DK1. The reported

performance has been achieved by this path:

1. Celoxica DK1 (using the Handel C2.1 compatible code) with export to VHDL.

2. Synplify 5.3 from Synplicity to create EDIF.

3. XILINX Alliance 3.3i tools to place and route from the EDIF netlist for the

FPGAs.

4. The Virtex XCV2000E-6 on the RC1000 board [6] was used for the

implementation.

5. MSVC code was used for interfacing of RC1000 board to Matlab. See [5] for

details.

Conclusions

The LNS implementation of the LRLS algorithms in an FPGA offers better speed

than C30/C40 DSP floating-point and provides a low-cost, efficient solution for

different system-on-chip applications. The resulting RLS Lattice cores operate with

24-bit precision fixed point input/output signals. Therefore, the internal conversion to

the log domain and the internal LNS operations can be hidden from the user. Our

Virtex XCV2000E-6 implementation works with 45MHz clocks and if compared with

50MHz TI C30/C40 DSP, it provides significant speedup without any loss of

precision.

The analyzed 8-th order Normalised RLS Lattice filter works on this FPGA device

at 36.7 kHz, wh ile 50MHz C30/C40 allows just 6.9 kHz. This gives the sustained

performance 12 Mflops for Virtex (input domain conversion is counted just one

operation) and 2.3 Mflops for C30. Both RLS lattice algorithms have efficient LNS

implementation because of numerous divisions or square-roots operations. The un-

normalised LRLS algorithm is less complex than the normalized one. However, the

sampling rate is just about 20% faster (47kHz for the same FPGA). We have

demonstrated that the Normalised RLS Lattice has superior robustness to the non-

persistent excitation. These algorithms could be used in applications like echo

cancellation, noise reduction, channel equalizat ion. Our future work will be focused

in implementing these algorithms using mult iple p ipelined logarithmic ALUs.

Acknowledgment

The authors wish to thank the referees for their helpful suggestions. This work has

been performed under the EU ESPRIT 33544 HSLA Long-term research project
(http://napier.ncl.ac.uk/HSLA), coordinated by the University of Newcastle, UK.

http://napier.ncl.ac.uk/HSLA

References

[1] J.N. Coleman, E.I.Chester, 'A 32-bit Logarithmic Arithmetic Unit and Its Performance
Compared to Floating-Point', 14th Symposium on Computer Arithmetic', Adelaide, April

1999

[2] Paulo S.R. Diniz, Algorithms and Practical Implementation, Kluwer Academic Publishers,

1997

[3] J.N.Coleman, E.Chester, C.Softley and J.Kadlec "Arithmetic on the European Logarithmic
Microprocessor", IEEE Trans. Comput. Special Edition on Computer Arithmetic, July 2000.

Vol. 49, No. 7, p702-715.

[4] Coleman J. N., Kadlec J.: Extended Precision Logarithmic Arithmetics. In Proceedings of

the 34-th IEEE Asilomar Conference on Signals, Systems and Computers, Monterey USA.

November 2000.
[5] J. Kadlec, A. Hermanek, Ch.Softley, R. Matousek, M. Licko “32-bit Logarithmic ALU for

Handel C 2.1 and Celoxica DK1 (53 MHz for XCV2000E-6 based RC1000 board)”

 Results will be presented at Celoxica user conference (In Stratford, UK, 2-3. April, 2001.

Download from: http://www.celoxica.com/programs/university/academic_papers.htm

[6] RC1000-PP Hardware Reference Manual, Celoxica, United Kingdom
 http://www.celoxica.com/products/boards/DATRHD001.2.pdf

[7] R.L. Walke, R.W.M.Smith, G. Lightbody, “20 GFLOPS QR processor on a Xilinx Virtex-E

FPGA”, SPIE, San Diego, 2000, U.S.A

[8] R.L. Walke, J. Dudley, “An FPGA based digital radar receiver for Soft Radar”, 34th

Asilomar Conference on Signals, Systems, and Computers, Monterey, 2000, California,
U.S.A

The codes for the proposed algorithms can be obtained from

http://falbu.50webs.com/List_of_publications_lns.htm

The reference fo r the paper is:

F. A lbu, J. Kadlec, C. Soft ley, R. Matousek,, A. Hermanek, A. Fagan, N. Coleman,

"Implementation of (Normalized) RLS Latt ice on VIRTEX", Field Programmable

Logic and Applications, Gordon Brebner and Roger Woods Editors, pp. 91-100, FPL

2001, Belfast, Northern Ireland, UK

http://www.celoxica.com/programs/university/academic_papers.htm
http://www.celoxica.com/products/boards/DATRHD001.2.pdf
http://falbu.50webs.com/List_of_publications_lns.htm

