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Abstract: This paper investigates the application of
Radial Basis Functions Networks (RBFN) to the
adaptive channel equalization of a bipolar signal
passed through a dispersive channel in the presence of
additive noise.  The computational requirement to
implement the optimal Bayesian symbol-decision
equalizer using RBFN [1]  can be very high as the
optimal Bayesian solution requires a large number of
centers. Statistical Sensitivity Analysis [3, 6] is
proposed for selection of an appropriate subset of input
variables which finally can lead to a more
parsimonious RBF equalizer structure. Our simulation
results show that this analysis method can provide a
good compromise between RBFN complexity and
equalization performance.

1. Introduction

Channel equalization is a technique employed to combat
the effects of intersymbol interference and noise which
corrupt the transmission of signals across a communication
channel (Fig. 1). The equalization objective is to
reconstruct the transmitted sequence with the minimum
error probability , i. e. : ~( ) ( )s t s t d= − , where d is the

delay. The channel is usually modeled by a FIR filter with

the following transfer function : H z h zi
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, where

hi  are the channel impulse response components and nh is

his length.  In our study the transmitted symbol s(t) is taken
from the data set { ±1} ; it forms an i.i.d. sequence, and e(t)
is an additive white Gaussian noise with zero mean and

varianceσe
2

.

Classically, linear equalizer are considered for this task,
but usually it reinforces the noise and it ignores the fact
that s(t) came from data set. A non-linear equalizer is
prefered, particularly in radio mobil systems designs.
It is well-known [7] that a non-linear block detection
equalization based on the principle of Maximum

Likelihood Sequence Estimator will provide the best
equalization performance when the channel is completely
known. Its implementation complexity is one of the main
reasons for using other non-linear symbol-decision class
equalizers with simpler implementations but poorer
performances. In this context, the communications
community has recognized the Bayesian symbol-decision
class equalizers as optimal solutions which deals with the
equalization problem as a classification one[1].
Let us consider now RBFN [1]. It is a two layers network
comprising a hidden layer and an output layer, and it has
been shown to be capable of universal approximation [4].
The hidden layer contains n neurons which calculate the
Euclidian distance between a center vector ci and an

input vector y = [y(t) y(t-1) …  y(t-m+1)] t
, where in

Fig.2:   y(t-j+1) = yj , j ∈  [1;m]. The result is passed
through a nonlinear function Φi  to generate the hidden

node output. Functions Φi  normally are chosen to be

Gaussian: Φi = exp(-•y - ci•
2/γi

2)  , where γi is called

the width. The output layer is computed by a weighted
linear combination of the n neurons of the hidden layer.

The overall response is a mapping: f wi
i
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where wi  are the weights.
It has been shown [2] that RBFN realize an
implementation of the optimal Bayesian equalizer if the
channel is known and the parameters of the network are
well chosen (i. e., the number of hidden neurons n is
equal to the number of desired channel states y t( ) :

n= 2 1m nh+ − ; the RBFN centers are placed at desired
channel states vectors:

[ ]ci i i

t
y t y t t m= − − +( ) ( ). ( ) .. y i1 1 ; the weights

are chosen in the data set: { ±1} , and γi
2 = 2σe

2
, i ∈

[1;n]). We remark that the RBFN structure can be
complex when m and nh are large.



In our work, the training of RBFN was done using a two-
steps approach: in the first step a supervised k-means
clustering procedure [2] was used to search and optimise
the location of the centers and the widths were set at
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, where i ∈  [1;n]  and dm is the maximum

distance between the chosen centers. In the second step,
the weights were trained using the least mean squares
(LMS) algorithm. In this case, the RBFN equalization
structure is called full RBF equalizer in this work. The
signal error: se(t) = s t( ) - s(t-d), is used in both the

supervised clustering procedure and the LMS algorithm
adaptive one.

2. Variable Selection Method using Statistical
Sensitivity Analysis (VS-SSA)

The primary aim of this analysis is the selection of an
appropriate subset of input variables in order to estimate
the more performent and parsimonious RBFN structure.
The method is based on the analysis of the partial
derivatives of the RBF output f ( )y = s t( )  with regards

to its inputs yj. Of course these quantities are random
variables which have to be measured statistically, on the
learning database. The analysis of the distributions of the
sensitivities on the training set allows the selection of a
candidate subset of irrelevant input variables.  Different
graphs enable us to make the selection of the relevant
variables. We analyse the plot of the 95% quantile of the
absolute value of the derivatives for each yi . The

quantiles   are   normalised   to   one   because   we   are
interested in the relative influence of each variable. If this
influence is close to zero, the corresponding variable is
considered as neglectible. The 95% are used to make the
criterion more robust, although it will capture less
variability of the derivatives. We also analize the mean
versus the standard deviation (std) of each derivative and if
the corresponding point is close to zero, the corresponding
variable is considered as neglectible. Unfortunately,
sometimes we have a fuzzy zone where it is hard to decide
whether a variable is important or not.  In those cases we
will select the most important variables, trying to discard
only the clearly irrelevant ones. We then re-estimate a
RBFN structure using the selected input variables to
compute more precise derivatives. Unfortunatelly the VS-
SSA method has some drawbacks. Sometimes, the number
of input variables will confuse the derivatives, because the
model is over-parametrized. Even in those cases where the
decision gets harder because all the variables tend to be
important, we can determine the most and the least
important inputs. In the presence of high noise and small
amount of data, the problem gets tougher, because it is
hard to estimate a good RBFN structure.

3. Simulation Results

The RBFN equalizer structures were analysed in three
nonminimum phase channels. We used a number of
samples for RBF training equal to the number of centers
multiplied by 10 and a validation dataset to stop learning
[3, 6]. The algorithms step-size parameters were
optimized in all simulations. We observed that the
convergence of the supervised k-means clustering
procedure is usually attained. In all VS-SSA studies, the
delay d was fixed to 1. The examples illustrate the good
properties of the VS-SSA method for reducing the
(m-n-1) RBFN complexity  by eliminating some inputs
and centers.

The first channel considered is: H z z1
31 0 729( ) .= + − .

We used a  6-512-1 RBFN structure, with inputs
y t y t y t( ), ( ), ( ),− −1 2  .. , y(t -5) . The SNR

(Signal-Noise Ratio) was 17 dB, and in this case, the
explanatory variables y t y t( ) ( )− −1 4 and  clearly

pop up (Fig 3 a,b). Using only these inputs, we retrained
the network as explained above and we were able to set
to zero some weights which were very close to zero by
using a threshold value equal to 1 percent of the
maximum value of the weights. The number of  pruned
centers depends on the number of  pruned inputs. In this
case the number of centers can be reduced from 512 to 32
(Fig. 3c). The performance of the parsimonious RBFN’s
structure (reduced RBF equalizer) closely matches the
full RBF equalizer performance in terms of BERL =
log10BER (BER=Bit Error Rate),  for 200000 test
samples (Table 1). This result shows the robustness of the
RBFN equalizer structure.
     The second channel used in our simulations was a
discrete microwave channel modeled as a FIR filter,
where only three components are selected based on a
maximum peak distortion criterium. His transfer function

is: 21
2 5989.07901.00875.0)( −− −+−= zzzH .

This channel model is obtained by sampling the analog
two-rays propagation model [5]. We used a roll-off
parameter equal to 0.3 in cosinus-raised filter system and
a transmission rate equal to 24 Mbit/sec. Phase-offset is
not considered and the sampling  optimum  epoch  is
used   [5]. We   designed  a  9-2048-1 RBFN structure,
with inputs y(t), y(t-1), y(t-2), …, y(t-8). In  this case, as
the distorsions are more important, the selection is more
difficult. We discarded the last three inputs and the
performance is acceptable for 17 dB
(Fig. 4). The BERL of the optimal Bayesian equalizer, the
full RBF equalizer and the order-6 Wiener filter equalizer
are plotted for comparison (Fig. 4c). We can see the
superiority of nonlinear techniques and that the RBF
equalizer achieves the optimal performance (Bayesian
equalizer) independently of the SNR value.
 We observed a damped repetition of statistical influence
of the important inputs over the irrelevant ones especially



when the transfer function of the channel has consecutive
significant coefficients.

4. Conclusion and Perspectives

In this paper, we have proposed the Variable Selection
Method using the Statistical Sensitivity Analysis for
selection of an appropriate input variables subset which
can lead to a parsimonious RBF equalization structure, and
can reduce its complexity by diminution of the number of
centers without significant degradation in equalization
performance. Our future work will be to extend this
research for more complex modulations, to investigate
other clustering algorithms and radio mobile channel
applications.
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Fig. 1- Discrete-time model of a data transmission system.
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Fig. 2 - Radial Basis Function Network (RBFN).
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Table 1:  H1(z) - BERL of: optimal Bayesian equalizer (m=6), full RBF equalizer (m=6, n=512) and
reduced RBF equalizer (m=2, n=32).
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Fig. 3 - (a) 95% normalized quantile of the absolute derivatives. (b) Mean( )ds dy/ x std ( )ds dy/ .

(c)  Weights of the pruned RBFN, SNR=17 dB.
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Fig. 4 – H2(z) and m=6: a) 95% normalized quantile of the absolute derivatives.

 b) Mean ( )ds dy/ x Std ( )ds dy/ . c) BERL. The order of the Wiener filter equalizer is 6.


