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Abseracr— In this paper, two new kernel adaptive algorithms
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I INTRODUCTION

Linear adapgve filters have been wsed to idennfy an
unknown system [1]. Several applications have been envisaged
ez, echocmeﬂanon[‘],acm'enotsecomolmex A.mm,
the most promusing adspave algonithms are the
ptqecnon(AP)alglmmmd;ropammaﬁm
projecuon (PAP) zlzorithm [5]. The kemel adaptive Slters have
been presented 1n [6] as an extension of the known fanulies of

the linear counterparts and their switsbility for non-linear
system idenrification has besn imvestgsted The kemel
meshods [6] has been appliad to the linsar adaptve flters and
se\mlmhasbeenpwposed(eg, kemel affine
projection (KAP) [7), the dichotomous coordinate descent KAP
§], the kemel proportonate afine projecton (KPAP)
algonithm [9]. the kemel reausive least squares (KRLS) [10]
and its fixed-budget version [11] etc.).

The paper proposes to apply the “pssudo™ approxinmtion
used for the PAP zlzorithm [12] and adspt the idea to the
kemel affine projection with a coberence criterion and the
kemnal affine projection respecuvely. The
resemblance between KAP algorithm and the evolubonary
affine projection algonthm firstly mentionad m [12] and
efficiently implemented in [2] is exploited To the best of our
Imowledze, this spproximation hasn't been applied yet to the
AP basad algontims. The new algonthms are czlled pseudo
kerpel affine projection (PEAP) algorithm and psendo kernel
proportionate  affine  projection  (PEPAP)  algontm
respectively.

'nlepapensotgmmdasfoﬂows Secnon II presents the
proposad algoritms and therr oumencal conpledtdes is
imvestizated The sinmlaton results for nonlinear system
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identification applicarions are presented in Saction III. Finally.
the conclusions ars presentad in Secton IV,

I TEHEPROPOSED ALGORITHMS

A The IZAP algorithm with a coharence arrterion

The kemel methods are based on a non-linear
transformation ¢(-) of the mpur data o, into a high-
dimensional feature space [7]. In this space, the lnear adsptive
algonithms are spplied to the transformed input siznal @{u, )
[7]. The kemel satsfies Mercer's conditions [6] and nonlinear
versions of the linear adaptive algonthms are obtzined uung
inner products [13].

ku,.u)=(p() o)) (1

The fimction ¢{+) has not an explicit formmia and the most
used kemals ame the Gaussian kemel
k(u,u )=exp(-lu —u ||25])and the Laplacian kemel
ku.u)=ep(-|u,-u, |/4) where f is the kernel

bandwidth [6]. [7]. In the f=ature space the unknown system is
modeled as follows

TACDE i]a,l‘(-,l.,) 2)

at the time a, where @ 's form an m-element subset of
I, of {L..n}. {k(nu, )], is called the dictionary and m is
the order of the kemmel expansion [7]. [9] An adaptive
alzorithm is used to estimate &, in (2). However, the kemel
alzonithms have some additonal processes. The insertion of
k(-.u_)into the dictionary is made if

Il’(l.. u, )Is (3)

o)l
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where 0<u <1 is a parameter [7]. The order of the kemel
filters will increase in ume and in some implementation a
restriction is imposed [11].

The KAP algorithm with coherence crterion was proposed in
[7]. The kemel output error vector i given by

el = du —nuéo-l (‘)

where d, =[d,...d,, Jis the observations vector,
e, =[¢,.e,,.,] is the output error. p is the order of the
algorithm and H, =[ LR )],_:,U 7

3= -
The update equations for & are obtained from the following
problem ar time step n [7]

mnja-4,, [©  subjectto d, =H.a (5)

The solution to (3) 15 found by minimizing the Lagrangian
function [7]

Jleil=le-a, [ +x'@, -Ha) (6)

where 4 is the vector of Lansranze multipbers. k(eu ) is
represented by the keme! functions of the dictiopary if
max, ., ik(e.w_ )i>4, [7] and the recursive update

equation for @_ 15
6,6, +nH (I-HE)'e, o))

It can be =asily seen the resemblance betwesn the affine
projection equations [I] and Equation (7). The size and time
evolution 15 different although the order of the filter and the
dictionary are the same

If omax,, kw6, )<y, Eou) is insered into the
dictionary where it is denoted by A(»u,_ ) [7]. The Equation
(5) is modified as

min|a, @, | +el, sbjectod ~Ha &

As shown in [7], one entry is addad to the vector @,and H, 15

increased by appending the Sl

fa
[k(""\n| "'k(u"P’“."-ol)r S I €, =da 'H"i aa-l} the
update equation is the following [9] =
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a, =[a8"]+nﬂ', (£I+H,B’.)'le, (93

B. The XPAP aigorithm with @ coherence criterion

The kernel propormonate AP (KPAP) alzorithm proposed
in [9] uses the proportiomate coefficients based on the

&_ coefficients as in [14]:

_ dr, 1) (14 5)

sy = i (10)
m m-1 =1 =
3 22{-0 Fn—ll*g

where @l are the coefficients of @,. We have
as follows [9]

a,=a_ +nC _H (el+HC, H)'e, (I

where 5 15 the normalized step-size paramster in the range
0<n <2 For the order increase case the updanng is gven by

e, :[dg' [+nC, 1, (e1+HC, H)'e, (12)

-

The KPAP alzorithm complexity s increased with <m
multiplications and addmons This complexity increase is small
if compared with O(mp? ) of KAP algorithm [7].

C. The proposed "pseudo” versions

The numerical complexity of KAP and KPAP algorithms can
be reduced if similar approximations with those used to derive
the pszudo affine projection algonithms [12], [13] are used If
wenote by R_=7I+H H, then Equation (7) s written as

& =4, +nHs, (13)
where s =R ‘e Like in [12]. instead of the very complex
openation of inverinz R, the following update is made for the
pseudo kemel affine projection (PEAP) alzorithm

a,=a,,+nHls, (14)

where s, is obtamned by solving R.s, =|:e,J 0’] and e, is
the first element of e, . If the order is increasing
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a4 7
@ =| * |+pH's
" [ o ' ﬂ .s.

(15)

This approximarion reduce the complexity about p nimes [16].
The equations of PEKAP alzorithm are shown in Table L

Algorithm 1 The PRAP Algorithn with coberence
crterion

Initialization:
Fix the memory length p, the step-sizo g, the reg-
ularization parameter e. m = 1, a, = ( hsert

(i my,) into the dictionary, denote it by e, w, ).
H, = [s(upoug,) o slugoug,)]f
Iteration:
for v > pdo
Get (u,.d,)
i minxgay, o | Rl us ) > g then
compute H,,, solve R,s), = [e. ; 0/]® and &,
using enquation (14}
end if
I ko, iy, 00, ) € g then
mow mA 1, insert g(-, n, ) into the dictionary,
denote it by g, ), solve R 8 = e, 0':'
and ealenlate @, using equation (15}
end if
end for

In case of KPAP algonthm if we note by
Q. =¢1+H,C, ,H, then Equation (11} 15 written as
& =4, +nC, Hs

1" n

(16)

whers 5 =Q'e . Like above. the following updare is made
for the pseudo kernel proportionats affine projection (PEPAP)
algorithm

dl = dl-l é”C'-—(n’-s:n ( 17]
where 5, is obtained by solving Q5 =[ e, | Ifthe order
1s mcreasing

i, =[°g' (e, s, (18)

The equations of PEPAP algorithm are shown in Table IT. The
computation of the matrices Q, and R, can be effcienty
implemented as in made as in an efficient way as i [2] and
[8]. Table III shows the computational cost per iteration of
KAP KPAP, PEAP and PEPAP alzonthms.
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Algorithm 2 The PRPAP Algorithn with cobiee-
onee eriterion

Initinlization:
Fix the memory length p, the step-size y, the reg-
ularization parameter e, me = 1, &, = O lsent

ki my,) into the dictiooary, denote it by gl ),
H, = [s(u,.u, ), .. slugu, )
Iteration:
for u = p do
Get (u,,d,)
Compute ¢, _, using equaton (10) and form the
matrix C,,..; = ding {en_;,--.. [roni
I Xy 000, 0 )| > 0 then
compute H,,, solve Q87 = [e, | 0] and @,
using equation (17)
end if
i i, [ W{0, 00, )| € o then
m = m+1, Inzeat gf-, u,) lnto the dictlonary,
demote it by ki, w,,, ), solve Qus! = la,.; 04
and coleulate @, using equation (18)
end if
end for

Fizure 1 shows the ratios of numerical complexities in tarms
of additons and multiplications of PKAP/KAP and
PEPAPKPAP, respectively, for variable m and p = 5. It can
be noticed that important computational savings are obtained
regardless if there is or not an order incraase, i.e at Izast 35%.
It is eastly to see that the computational savings are higher for
higher values of p. Also, the complexity ratio without order
increase is much smaller than that with order increase for
small m values. On the other hand, when m has high values
thare is a small difference berween the complexities ratio with
order increase and without order incrsase.

nés

m
Fig 1. The complcry ratics of PRAPEAP and PEPAPEPAP respectively
for @&ffarant ar vakes and p = §; without codar creass (solid lins), with coder
czease (dotted ine).
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Table 1: Computational Cost per Iteration of KAP,

KPAP. PKAP, PKPAP :\Q,ucllluxu

“without order - | with  onder  me |
crease Crease |
KAP[T] 1T F+2pim+p*+p VI]P",J- Imm A+ |
’p +p
(7 2p)me+ | p? - 2pym gt 4
»? P Ap-1
KPAPY)| (P! +2p+ 2+ | (¥ +2p+ 2)m +
px +n 2+t + »
0T 0% Qe 1| Ip’ I Jp BTN
-+ Py tp-1
PKAP S+ (o+ 17— | apentp 62+
pla Op/6
Spn+ 64 7 = | Spetpt G4-2p7 -
/i Tp/6+ 1
PRPAP (et 23+ G4 Iip +2)m+p 6+
- p/6 2p* + Bp/6 ]
(Bpt 2im - g i ."I'lp V24 pt 6 |
pe - Tulb 207 — Tn/6+ 1 I

III. SDMULATION RESULTS

In the follomg simulations we consider the
nonlinear descnbed by

d,=(08- 04up( l)) 1-(03+08ex(-d 1)), 5
+0.05sm(d, v}, where d, is the desired sizmal [7]. The

data was generated as in [7] starting from (0.1, 0.1) and 4,

was corrupted Dy a zero-mean Gaussian distribution noise and
01 standard devianon The  Gaussian  kemnel

k(u.u,)=exp(-373.0m, -u,F). £=10° and the
regularization parameter £ = 0.07 were used Fizure 2a shows
the MSE difference in dB between KAP and PEAP while

fizure 2b shows the difference between EPAP and PEPAP for
=3, u,=06 and 5=-00. Fifty MSE curves were

averaged for Fig. 1. The value of 4, was found as the best
coherence value that provides the minimum mean MSE [¢].
Also, it was shown in [9] that KPAP alzonithm can obtain an
improvement of about 1 dB average ower that of KAP
algonthm for mest iterations of this application. It can be
noticed that, apart from a differsnce in the initial converging
phase of few dBs. the MSE difference is less than 0.5 dB after
convergence. Also, it can be noticed that the amplitude of the
MSE difference is higher for the proportionate alzorithms in
the ininal convergence phase.

Therefore, the compromise in performance is worth
considering if a much lower numsncal complaxity 13 needed.
Similar conclusions were obminad for other parameters of the

Furure work will be focused on investgating the muin-
kemmel approach as m [17], developing Gauss-Seidsl or
dichotomous coordinate descent versions as m [18] - [20].

978-1-5080-£748-0/17/831.00 ©2017 IEEE

Tying sparss versions as m [21] - [22], apply them to the active
noise control as m [3]. [18] and [23] or point spreads functon
estimation [24].
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Fig 2. a) The MSE diffrunce betwsen the comvergsncs characienstics of
w&mw&mmm%b The
MSE diffarance betwwan e commrpance chamcwristics of -\l)M
PEPAP algerithms for $6 systam idansfication axanwpls.

IV. CONCLUSIONS

The pssudo KAP and pseudo EPAP alzorithms have been
proposed. It was proved that the PEAP and PEKPAP algonthms
are more computationally efficient than the orizinal alzorithms
having only a miner performance loss for the nonlinear system
idantification application.
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