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Abstract—The lp norm-constrained proportionate normalized 
least-mean-square (LP-PNLMS) using the modified filtered-x 
structure is proposed for active noise control. It is shown that 
better performance is obtained for primary and secondary paths 
having a wide range of sparseness levels when compared with 
competing sparsity-inducing algorithms at a price of moderate 
complexity increase. 
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I.  INTRODUCTION 

Active noise control (ANC) techniques using adaptive 
filters have been widely used for removing noise [1]. The ANC 
algorithms takes into account the secondary path that causes 
delays in signal transmission [2]. The filtered-x (Fx) scheme 
using the least-mean square (LMS) algorithm has been 
introduced in [2]. Better performance was reported by the more 
complex affine projection algorithms or its variants (e.g. [3] - 
[6]). One of the shortcomings of the Fx scheme is the slow 
convergence of the adaptive filter caused by the necessity of 
using small step sizes [3] - [6]. The modified filtered-x (MFx) 
approach [7] greatly improved the convergence speed with the 
penalty of an increased numerical complexity due to an 
additional filtering step. Numerous algorithms have been 
proposed using the MFx scheme (e.g. [8] - [10]).  

In many cases, the system to be identified presents a degree 
of sparsity [3]. Several algorithms incorporating sparsity 
penalties were proposed, e.g. the zero-attracting (ZA) and 
reweighted zero-attracting (RZA) algorithms [11], [12]. The 
corresponding ZA version of the NLMS algorithm can be 
easily obtained by setting the projection order to one in the ZA-
MFxAP algorithm from [12]. The numerical complexity of the 
ZA and RZA versions for ANC is too high and a simpler 
option that has a faster convergence than LMS or NLMS 
algorithms for sparse primary or secondary ANC paths is to use 
the proportionate NLMS (PNLMS) algorithm [13] or the 
related μ - law PNLMS algorithm [14]. The combination of 
improved PNLMS (IPNLMS) filters for active noise control 
was proposed in [15] - [16]. Unfortunately, the numerical 
complexity of this approach is at least double. A simpler 

alternative called zero attracting PNLMS (ZA-PNLMS) has 
been proposed in [17]. 

Recently, the lp-norm-constrained proportionate 
normalized least-mean-square (LP-PNLMS) algorithm has 
been proposed [18]. It was shown that the incorporation of the 
weighted lp-norm and the PNLMS approach was leading to an 
increased convergence performance for a sparse channel 
estimation application [18]. 

In this paper we incorporate the LP-PNLMS algorithm into 
the MFx structure and investigate its use for different primary 
and secondary paths with various sparseness levels. The 
influence of two parameters of the modified filtered-x LP-
PNLMS (MFx-LPPNLMS) algorithm is investigated and its 
performance is compared with that of competing algorithms 
for an ANC application. To the best of our knowledge, the 
application of the MFx versions of the PNLMS and its lp-norm 
version has not been investigated yet. Also, we show that, 
when ZA-PNLMS is used in a MFx scheme, it is a 
particularization of our MFx-LPPNLMS algorithm, having 
inferior performance in several ANC situations. Its behavior 
for an active noise control application has not been 
investigated in [17].      

Section II presents the ANC system and the equations of 
MFx-LPPNLMS algorithm. In Section III, the proposed 
algorithm is compared with competing ANC algorithms. In 
Section IV several conclusions and further direction of research 
are presented. 

II. THE PROPOSED ALGORITHM 

In broadband feedforward ANC, the noise is reduced by 
subtracting from the acoustic signal a generated signal by using 
an error signal [1]. In the MFx structure shown in Fig. 1, ( )kq  

is the primary path, and the instantaneous error signal ( )ê k  is 

estimated [7]. The signal ( )x k  and the estimated secondary 

path, ( )ˆ ks , are needed to generate the ( )fx k  signal. In this 

structure it is not needed for the signal ( ) ( ) ( )1d k k k= +x h  to 

be available, where ( )kx  collects L  consecutive samples of 

( )x k , L being the filter length [11].  
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Fig. 1: The MFX structure using the proposed LP-PNLMS algorithm. 

The condition ( ) ( ) ( )ˆ 1fd k k k= +x h  is imposed where 

( )f kx  collects L consecutive samples of ( )fx k   [11]. We 

also have ( ) ( ) ( )ˆ fy k k k= x h . 

A. The MFX-PNLMS algorithm 

The PNLMS algorithm uses a proportionate technique, 
where the coefficients with a higher magnitude have a larger 
step-size importance, and therefore, these active taps converge 
faster. The MFx-PNLMS algorithm update equation with 
reference to Fig. 1 is the following: 

( ) ( ) ( )
( ) ( )

ˆ
1 ( ) PNLMS

T
PNLMS f

k e k
k k

k k

μ
δ

+ = +
+

C
h h

x C
                              (1) 

where 2 /
f

PNLMS x Lδ σ=  is a regularization factor, PNLMSμ  

is the step size and ( ) ( ) ( )fk k k=C G x  where 

 ( ) ( ) ( ) ( )( )0 1 1, ,..., ,Lk diag g k g k g k−=G                  (2) 

with each ( )ig k  computed as follows 

 ( ) ( )
( )1

0

,      0 1i
i L

ii

k
g k i L

k

χ

χ−
=

= ≤ ≤ −


                        (3) 

with 

( ) ( ) ( ) ( )0 1max  max , ,..., , ,i g p L ik h k h k h kχ ρ δ −  =     (4) 

where gρ  and pδ are small positive constants. 

B. The MFX-LPPNLMS algorithm 

The LP-PNLMS algorithm [18] incorporates the ݈p-norm into 
the PNLMS cost function and uses the gain-matrix weighted 

݈p-norm in designing the zero attractor. As shown in [18] the 
following relation is obtained: 
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where  
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LPμ  is a step size, 2 /
f

LP x Lε σ= , LPγ  and ε  are small 

constants, ( )1/ pp
ip i

h= h is the p-norm of h, 0 1p≤ ≤ . It 

is assumed that the elements of ( )kB  are smaller than one as 

in [17] or [18]. This assumption also leads to an important 
complexity reduction of the proposed MFx-LPPNLMS 
algorithm whose update equation with reference to Fig. 1 is 
given by: 
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where LP LP LPρ μ γ= . It should be noted that the zero-

attracting PNLMS (ZA-PNLMS) algorithm proposed in [17] if 
applied using a MFx scheme is a simple particularization of 
the MFx-LPPNLMS algorithm for p = 1. Its behavior for an 
active noise control application has not been investigated in 
[17]. By comparing Eq. (1) with Eq. (7), the additional 
complexity of MFx-LPPNLMS over MFx-PNLMS is given by 
the ݈p-norm term. Besides the additional L multiplications and 
L divisions, there is a moderate complexity increase associated 

with computing L values of ( ) 1 p

p
k

−h  and 

( )1 p
k

−h respectively. 

III. SIMULATION RESULTS 

 This section presents the simulation results of the MFx-
LPPNLMS, MFx-PNLMS and MFx-ZANLMS [12] algorithms 
for an ANC application using the same primary and secondary 
paths as in [11]. For all the algorithms, the parameters were 
tuned to the same values as in [11]. For each primary path the 
algorithms were run for 45,000 iterations with the secondary 
path set as sparse at the start of the experiment, changed to 
partially-sparse at iteration 5,000 and to non-sparse at iteration 
25,000. For the simulations the following parameters were 
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used: 0.002,δ = 0.01pδ = , 0.05ε = , 0.00625gρ =  and 

L=800. The performance of the algorithms has been plotted 
using the mean-square deviation (MSD) convergence curves. 
The step sizes were adjusted to obtain the same initial 
convergence speed for each ANC situation. For the sparse 
primary path case, the step size values of the MFx-LPPNLMS 
algorithm, for each secondary path in the sequence shown 
above were 1, 0.6 and 0.4 respectively. For the semi-sparse 
primary path, the step size values of the MFx-LPPNLMS for 
each secondary path were 1, 0.6 and 0.9 respectively. Finally, 
for the non-sparse primary path, the step size values for each 
secondary path were 1, 1 and 0.7 respectively. These values 
and other parameters were similar with those used in [11] and 
[12] and facilitates the comparison with MFx-ZANLMS.  In 
the next simulation examples, the parameter value that provide 
the best performance compromise is the value that has the 
smallest MSD average over all 45000 iterations.  

Figure 2 shows a comparison of MFx-LPPNLMS for different 

LPρ  values for a sparse plant. It can be noticed that the 

convergence speed of the MFx-LPPNLMS algorithm is 

decreasing when LPρ  value is decreased from 410−  to 910− . 

However, the best compromise is obtained for 510LPρ −=  if 

the average steady-state MSD performance for all cases is 
taken into account as mentioned above.  
In Fig. 3, the MSD performance for the same LPρ  values as 

above and the semi-sparse path case is shown. For this case, 
the best compromise regarding the convergence speed and 
overall performance for all the secondary paths is obtained for 

910LPρ −= . 

In Fig. 4 the MSD performance for various LPρ  values and 

the non-sparse path case is shown. In this case, the best overall 
performance compromise regarding the convergence speed is 

obtained for 810LPρ −= . 

Figure 5 examines the MSD performance for a sparse plant 
and variable p from 0.5 to 1 with 0.1 increment.  

 
Fig. 2. MSD results of MFx-LPPNLMS algorithm for various LPρ  values and 

a sparse plant. 

 
Fig. 3. MSD results of MFx-LPPNLMS algorithm for various LPρ  values and 

a semi-sparse plant. 
 

It is found that p = 0.7 is the value that provides the best 
compromise for the sparse plant case.  
Figure 6 shows the MSD performance for a semi-sparse plant. 
It is found that the best compromise is obtained for p = 0.5. 
The same conclusion regarding the value of p = 0.9 can be 
found and noticed from Fig. 7 where the MSD performance 
for a non-sparse plant is shown. Figures 8-10 shows the MSD 
performance comparison of MFx-LPPNLMS, MFx-PNLMS 
and MFX-ZANLMS for sparse, semi-sparse and non-sparse 
plants respectively.  
Therefore, it is obvious that a careful selection of the LPρ  and  parameters should be made for the best convergence 
performance of the proposed MFx-LPPNLMS algorithm for 
plants with various sparseness values. The parameters chosen 
for the MFx-LPPNLMS for each plant are those identified 
above as providing the best performance compromise. It can 
be easily noticed that the proposed algorithm achieves the best 
results for the sparse primary plant and sparse secondary plant.  

 
Fig. 4. MSD results of MFx-LPPNLMS algorithm for various LPρ  values and 

a non-sparse plant. 
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Fig. 5. MSD results of MFx-LPPNLMS algorithm for various p values and a 

sparse plant. 

 
Fig. 6. MSD results of MFx-LPPNLMS algorithm for various p values and a 

semi-sparse plant. 

 
Fig. 7. MSD results of MFx-LPNLMS algorithm for various p values and a 

non-sparse plant. 
 
For the semi-sparse plant, the proposed algorithm provides the 
best results among the considered algorithms for the sparse 
secondary path.  

 
 
   

 
Fig. 8. MSD results of MFx-LPPNLMS, MFx-PNLMS and MFx-ZANLMS 
algorithms for a sparse plant. 

 
Fig. 9. MSD results of MFx-LPPNLMS, MFx-PNLMS and MFx-ZANLMS 
algorithms for a semi-sparse plant 

 
Fig. 10. MSD results of MFx-LPPNLMS, MFx-PNLMS and MFx-ZANLMS 
algorithms for a non-sparse plant. 
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Alternatively, the MFX-ZANLMS algorithm has the best 
MSD results in case of non-sparse plant. This confirms the 
numerous studies that have shown the weakness of the 
proportionate algorithms for identifying dispersive systems 
[13], [15]. Therefore, the MFx-LPPNLMS algorithm, with a 
proper parameter selection can represent a practical alternative 
for ANC, especially for sparse and semi-sparse plants. 

Further work might incorporate variable step-
size/projection order [9], use the correntropy criterion [20] or 
reweighted least-mean mixed-norm approach [21] in order to 
develop new MFx-based active noise control algorithms and 
investigate their real-time performance.  

IV. CONCLUSIONS 

This paper has proposed the MFx-LPPNLMS algorithm for 
ANC systems. The simulation results show that the MFx-
LPPNLMS algorithm provides MSD improvements over 
competing algorithms for sparse and semi-sparse plants in case 
of a wide sparseness range of secondary paths. These 
performance improvements are obtained with a moderate 
complexity increase. Therefore, the MFx-LPPNLMS algorithm 
can be a good option for ANC systems. 
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