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Abstract—In this paper, an adaptive adjustment method for the
kernel parameter used in the kernel adaptive filters (KAFs) is
proposed. The KAF is one of the linear-in-the-parameters (LIP)
nonlinear filters, and is based on the kernel method used in
machine learning. Typically, the Gaussian kernel function is used,
but there is no effective method for automatically adjusting its
parameter that influences the convergence characteristics of the
KAFs. An adaptive adjustment method for this parameter is
proposed in the paper. The proposed method uses the difference
of ℓ1 norms of the input signals for the unknown system and
the adaptive filter as the criteria. The kernel parameter will be
updated according to the differences. The qualitative results of
the proposed method is shown by the computer simulations.

Keywords—Kernel normalized least mean square algorithm;
kernel parameter; Gaussian kernel

I. INTRODUCTION

Adaptive filters (AFs) are used in a wide area of applica-
tions, e.g., echo or noise cancelling etc [1]. They enable the
autonomous learning of an unknown linear system from its
input and output signals.

Several attempts for extending AFs for nonlinear problems
are considered and proposed as nonlinear AFs (NAFs) [2]–
[6]. The kernel AF (KAF) [6] is a recently proposed NAF
which is derived by applying the kernel method to linear AFs.
For implementing a KAF, the input signal is transformed into
a higher characteristics space, and then, an adaptive filter is
applied in this space. The adaptive algorithms for the KAFs
are derived by slightly modifying the conventional ones for the
linear AFs. We can say that the KAFs is one of the linear-in-
the-parameters (LIP) nonlinear filters, because the KAF can
be seen as a linear filter with the transformed higher order
input signal.

When the KAFs are implemented, the selection of the
kernel function is important, and the Gaussian kernel is usually
selected. The Gaussian kernel has a parameter called the band
width and it is known that its value affects the convergence
characteristics of the KAFs, e.g., the rate of convergence, the
excess MSE, and so forth. This is one of the practical problems
of KAFs when they are applied to the actual applications [7].
In many cases, when they are applied to real applications, the
kernel parameter is determined experimentally in advance.

One of the solutions for relaxing the difficulty of the
selection of the kernel parameter is to use multi-kernel AFs
(MKAFs) [8]–[10]. MKAFs are implemented with multiple

KAFs with different kernels to improve the performance of
KAFs. Namely, multiple Gaussian kernels can be used with
different values assigned to the kernel parameters, and this
enables the improvement of the convergence characteristics if
one or more of those parameters fit the input signal. However,
it still remains that near optimum value is to be selected to
one of the kernels even when the MKAFs are used.

Besides, several advanced structures of the KAFs are pro-
posed so far. The mixture structures of KAFs [11], [12]
is an extension of the mixture structure for the linear AFs
[13]. On the other hand, the structures of [3], [5], [14]–
[16] are improving the convergence characteristics when the
target system consists of the linear and nonlinear components.
Although these advanced structures are applied, the selection
of the kernel parameter is still an important issue when the
Gaussian kernel is used.

In this paper, we consider an adaptive method for adjusting
the kernel parameter in order to relax the difficulty of the
selection. The proposed method uses the LIP nature of the
KAFs instead of altering the structure as mentioned above. For
that, we investigate the effect of the kernel parameter on the
transformed input signal. From the consideration, we propose
an update equation of the kernel parameter. The proposed
method is based on the difference between the ℓ1 norms of
the input signals to the KAF and the unknown system. It
is shown by using computer simulations that the proposed
method can adaptively adjust the kernel parameter and improve
the convergence characteristics of the KAFs.

II. KERNEL ADAPTIVE FILTERS

Here, the kernel adaptive filter is summarized.

A. Kernel adaptive filter as an LIP nonlinear filter

The KAF is an extension of the linear AFs (LAFs) based
on the kernel method [6], [7], [17]–[19].

The LAF, the input signal of the unknown system will be
directly used as the input signal of the LAF. On the other hand,
when a KAF is used, the transformed original input signal
represents the input of the KAF. Namely, the input signal of
the unknown system, expressed as {x(n) | n = 0, 1, 2, . . .}
in the following lines will be mapped onto a higher order
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characteristics space using a mapping function ψ(x(n)), where
x(n) is the vector consists of x(n) and is expressed as

x(n) = [x(n) x(n− 1) · · ·x(n−N + 1)]T (1)

where N is the length of the vector and it corresponding to
the length of the adaptive filter, and the superscript T shows
the transpose of a vector or a matrix.

Then, the unknown system is modeled as a weighted sum
of ψ(x(m)) as

w̄(n) = h0ϕ(x(0)) + · · ·+ hn−1ϕ(x(n− 1)) (2)

where {hi | i = 0, . . . , n−1} are the unknown weights. Using
kernel adaptive algorithm, the set of [h0 h1 · · · hn−1] are
optimized as the coefficient vector of a KAF. The form of (2)
is a linearly weighted combination of hi, and therefore, the
KAF can be regarded as one of the LIP nonlinear filters. In
Fig. 1, we show the structure of the KAF.

Fig. 1. Typical input and output relation of a kernel adaptive filter as a LIP
system

By using the kernel trick [6], we can express υ(n), the
output of w̄(n), as

υ(n) = h0κ(x(n),x(0)) + · · ·+ hnκ(x(n),x(n− 1)) (3)

where κ(·, ·) shows a kernel function. The following form of
the kernel function is widely used in kernel adaptive filtering

κ(x,y) = exp
(
−ζ||x− y||2

)
(4)

where ζ is a parameter of the kernel function called the
bandwidth whose value affects the convergence characteristics.
This form of the kernel is called the Gaussian kernel.

We define the vectors S(n) and h(n) as

S(n) = [κ(x(n),x(0)) · · · κ(x(n),x(n− 1))]
T

h(n) = [h0 . . . hn−1]
T (5)

and, by substituting them into (3), we obtain the following
relation

υ(n) = ST(n)h(n). (6)

This equation can be seen as the input-output relation of h(n).
We show a typical structure of the kernel filter in Fig. 2.
In this figure, M is used to show the number of elements
in the dictionary for learning which is described in the next
subsection.

Fig. 2. Transform of input signal by kernel function

B. Kernel Normalized LMS algorithm

A lot of adaptive algorithms for KAFs have been proposed
so far [6]. In this paper we use the kernel normalized least
mean square (KNLMS) algorithm [7] which is as extension of
the linear NLMS algorithm [1] for nonlinear problems.

The algorithm updates all the filter coefficients h(n) at each
time n by

h(n+ 1) = h(n) + η
e(n)S(n)

ϵ+ ST(n)S(n)
(7)

e(n) = d(n)− ST(n)h(n− 1) (8)

where η is the step size and ϵ is the stabilization parameter.
At each time n, the input signal vector S(n) is stored in a

dictionary D = {S(m)|m = 0, . . . , n − 1}. This means that
the order of the KAF increases at each time, and required
computation becomes larger as time advances. To prevent this
unwanted increase of computational load, several sparsification
methods of the dictionary, e.g., [7], [20], were proposed. We
use the sparsification method from [7]. When a sparsification
method is used, the number of the input signal vectors S(n)
stored in the dictionary becomes smaller than n − 1. We use
the variable M (0 < M < n) to show the number of vectors
in D. For the detail of the sparsification methods, please refer
the references above.

C. The Gaussian kernel and the kernel parameter ζ

It is widely known that, when the kernel is the Gaussian, the
value of ζ affects the convergence characteristics of the KAFs,
e.g., rate of convergence, the excess MSE, etc [7], [20].

So far, there are no widely used criterion to select the
value of the kernel parameter. Instead, suitable value would be
selected based on the results of experiments as in [7]. On the
other hand, the multi-kernel structure [8] was proposed which
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uses multiple kernels with different settings for relaxing the
difficulty in the selection of the optimum value for the kernel
parameter. However, even if the multiple kernels are used, it
is not certain that one of the parameters is near the optimal
value. Hence, it is desirable to obtain the adaptive method for
adjusting ζ.

III. PROPOSED METHOD

Here, we consider an adaptive method to assign an appropri-
ate value for the kernel parameter. Note that, in the following,
we assume that the KNLMS algorithm is used with a single
Gaussian kernel.

A. Effect of selection of the kernel parameter ζ

We describe the proposed method that adaptively adjusts
ζ of the Gaussian kernel. In order to develop an adjusting
method, we need to find a criterion under which we can
formulate the problem as an optimization problem.

Under the viewpoint that the KAF is a LIP nonlinear filter,
we describe the effect of ζ on the output signal of the KAF.
The output signal υ(n) of a KAF is given as an inner product
as in (6), and the input signal of h(n) is S(n). Each component
of S(n) is given as

κ(x(n),x(m)) = exp
(
−ζ||x(n)− x(m)||2

)
(9)

m = 0, . . . , n− 1

From this equation, we can see the magnitude of each compo-
nent of S(n) is determined by the selection of ζ. Hence, the
ℓ1 norm ∥S(n)∥1 or the ℓ2 norm ∥S(n)∥2 is also depends on
ζ.

This means that the magnitude of υ(n) also becomes the
function of ζ because the following relation holds

∥S(n)∥∥h(n)∥ > ∥S(n) · h(n)∥ (10)

from the Cauchy-Schwarz inequality. When the magnitude of
the output signal becomes smaller, then the error signal e(n) =
d(n) − υ(n) becomes larger under the condition that d(n) is
the same. It is reasonable to maintain the magnitude of the
output signal υ(n) to be as close as the desired signal d(n)
for the KAF to be updated.

We should note here that the optimum magnitude of S(n)
may not be required because the adaptive algorithm adapts the
filter coefficients h(n). On the other hand, it is well known
that the convergence characteristics of the kernel filters, e.g.,
the rate of convergence, the excess MSE, etc, depend on the
selection of ζ. Hence, in the following, we consider a method
of adaptively adjusting ζ based on the consideration above.

B. The proposed adjusting method for ζ

Let us develop an adaptive method for adjusting the kernel
parameter ζ under assuming that the kernel adaptive filter is
a LIP nonlinear filter.

Our objective is to search for the near optimum value of
kernel parameter for improving the convergence characteristics
of the KAFs. An optimization based on the criterion using the
error signal e(n) could be considered. However, this requires

the simultaneous optimization of ζ and the coefficients of the
KAF, and it may be complicated to develop.

Instead, we consider here a simpler method based on the
view of the KAF as an LIP. Namely, we propose to adjust the
value of the kernel parameter using the ℓ1 norm of S(n). As
mentioned in the previous subsection, the ℓ1 norm becomes a
function of ζ. We require this ℓ1 norm to be close to that of
x(n). Namely, we adjust ζ according to the difference between
the ℓ1 norms of the input signals of the unknown system and
the KAF:

εℓ(n) = ∥x(n)∥1 − ∥S(n)∥1 (11)

where ∥x∥1 shows the ℓ1 norm of the vector x, i.e., ∥x∥1 =
|x0|+ |x1|+ · · ·+ |xM−1|.

Using the error defined by (11), we update the kernel
parameter using the LMS-style equation.

ζ(n+ 1) = ζ(n) + µζεℓ(n) (12)

where µζ shows the step-size parameter. Note that ζ(n) shows
the kernel parameter ζ at time n because in the proposed
method ζ becomes time-variant. Although the length of x(n)
is fixed as N , the length of S(n) is time-varying.

In actual applications, we might need to limit the value of
ζ(n) in the predefined region ζmin ≤ ζ(n) ≤ ζmax by{

ζ(n+ 1) = ζmax if ζmax < ζ(n+ 1)
ζ(n+ 1) = ζmin if ζmin > ζ(n+ 1)

(13)

after update of ζ at each time to prevent the divergence of ζ.

IV. SIMULATION RESULTS

Simulations were performed in order to show the qualitative
results and prove the validity of the proposed method.

We compared three KAFs, namely two of them are KNLMS
adaptive filters with the fixed ζ, i.e., (i) ζ = 0.5, (ii) ζ = 1.5,
and (iii) the proposed method. Note that the values of ζ for
the KNLMS were determined from the results of simulations
with varying its value under the conditions below.

The Gaussian kernel was employed and the KNLMS algo-
rithm was used to update the filters. For the proposed method,
the initial value for ζ(n) was set as 1.0 regardless of the
simulation type. The step-size parameters of the KNLMS
filters were set as η = 0.1. Besides, µζ was set to 0.1
after some trials. The length of adaptive filters N was set to
N = 30. The zero mean Gaussian noise with 0.001 variance
was added to the desired signal. The results of ensemble
averages of 1000 independent simulations are shown.

A. Time invariant nonlinear system

We simulated two non-linear models used in [21]. Note that
the models were originally proposed in [22] by extending the
primary model proposed in [23]. In the first simulation, the
equation below was used to generate the signal d(n): υ(n) =

υ(n− 1)

1 + υ2(n− 1)
+ u3(n− 1)

d(n) = υ(n) + ξ(n)
(14)
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where u(n) and υ(n) are the input and the output signals
respectively. We used a Gaussian process of the zero-mean
and the standard deviation σu = 1 to generate u(n).

Figure 3 show that the KNLMS with ζ = 0.5 provides better
convergence characteristics than that with ζ = 1.5.
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Fig. 3. Comparison of MSE for the system (14).

Next, we simulated the second model in [21]:

ϕ(υ(n)) =


υ(n)

3[0.1 + 0.9υ2(n)]1/2
for υ(n) ≤ 0

−υ2(n)[1− exp(0.7υ(n)]

3
for υ(n) > 0

d(n) = ϕ(υ(n)) + ξ(n) (15)

where ξ(n) is the additive noise. Besides, υ(n) is given as

υ(n) = aTu(n)− 0.2υ(n− 1) + 0.35υ(n− 2) (16)

where a and u(n) are

a = [1 0.5]T (17)

u(n) = [u1(n) u2(n)]
T (18)

respectively.
The results are shown in Fig. 4. It can be seen that the con-

vergence characteristics of the proposed method approaches
those of the KNLMS with ζ = 0.5.

By comparing the results in Figs 3 and 4, it can be seen that
the proposed method achieves the comparative convergence
property with the better one of the KNLMS KAFs. Therefore,
we can say that the proposed method has an ability to
adaptively adjust ζ for these systems.

B. Time varying nonlinear system

In this section the simulation results of the proposed method
for the time varying nonlinear systems are shown in order to
confirm its tractability.

In this case, we add an linear filter to the models of Sec.
IV-A. Namely, the output signal is given as

y(n) = a1yn(n) + (1− a1)yl(n) (19)
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Fig. 4. Comparison of MSE for the system (15).

where yl(n) and yn(n) are the output of a linear and a
nonlinear filter respectively, and a1 is the weight to balance
the linear and nonlinear components of y(n). As the nonlinear
filter, we used the model 1 and 2 of Sec. IV-A, i.e., yn(n) is
obtained from either (14) or (15). On the other hand, as the
linear filter, a low pass filter with tap length 21 designed using
the Remez algorithm was used. The value of the weight a1
was set to 1 (0 < n < 300), 0.5 (300 ≤ n < 500), 0 (500 ≤ n)
to artificially change the system from nonlinear to linear.

Fig. 5 shows the results for the first model, while Fig.
6 shows the results for the second model. By comparing
these results, it can be seen that, after the system change
at n = 200, the KNLMS with ζ = 1.5 provides better
convergence characteristics in Fig. 5, and on the other hand,
that with ζ = 0.5 in Fig. 6. The proposed method provides
almost the same characteristics as the one that achieves the
better performance in both cases. These results suggests the
validity of the proposed method.

Although there are a lot of points to be considered further
to improve the performance, we can say that it is confirmed
that the proposed method has an ability to adjust the kernel
parameter according to the environments.

V. CONCLUSION

In this paper, we considered a method for adaptive ad-
justment of the kernel parameter ζ of the Gaussian kernel
used for the KAFs from the view point of LIP nonlinear
filters. We investigated the relation of the ℓ1 norm of the
input signal and ζ. From that we proposed a method for
adaptive adjustment of ζ based on the difference of ℓ1 norms.
We applied the proposed method to the nonlinear system
modeling in computer simulations. The results show that the
proposed method enables to adaptively adjust ζ. Although the
simulated environments are limited and the method may not
obtain the optimum value, the possibility to adjust the kernel
parameter was shown in the investigated examples. For the
future work, we would develop a theoretical analysis of the
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Fig. 5. MSE performance of the investigated algorithms for the time varying
system with the nonlinear system defined by the equation (14) and a linear
system. The system was changed at n = 200, and n = 500.
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Fig. 6. MSE performance of the investigated algorithms for the time varying
system with the nonlinear system defined by the equation (14) and a linear
system. The system was changed at n = 200, and n = 500.

proposed method. Besides, we will consider the effect of the
selection of the parameters, i.e., the step size µζ in (12), the
upper and the lower bounds for the kernel parameter in (13).
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