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_______________________________________________________________________________ 
Abstract— The LIP (Logarithmic Image Processing) tools are mathematical models 

dedicated to the representation and processing of gray tones images. The underlying model is 
derived from the observation that digital camera response function can be described as a 
multiplication in logarithmic domain. In this paper we extend the logarithmic models to 
process color images and show how they can be used to implement low-light image 
enhancement in digital cameras. 
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I  INTRODUCTION 
Not too long after their appearance in the early 

90’s, digital still cameras (DSC) have become the 
common way of acquiring images. Nowadays, the 
main direction seems to be that of decreasing the size 
and weight of imaging devices, which has reached a 
pinnacle with Mobile Phone Cameras (MPC). At the 
same time the camera producers engage with 
tremendous efforts in the Megapixels race. 

 The trend of miniaturisation mentioned above 
is imposing design modifications such as reducing 
the size of optics and of photo-sensible area. If we 
discuss these issues from an end-user point of view, 
the problem is that of increased susceptibility of 
images to blur from shaking hands [1]. The small 
photo-sensible area diminishes the number of 
collisions in the photo-voltaic effects and, therefore, 
it reduces the correlation between the incident light 
and the reported image intensity. On the other hand, 
the small photo-sensible area decreases picture angle. 
Since human hand jitter is always present, the small 
picture angle increases the chances that the relative 
motion between the camera and the scene during 
exposure time becomes larger than a pixel size and 
thus leading to visible motion blur.  

Since this phenomenon can significantly 
degrade the visual quality of images, photographers 
and camera manufactures are frequently searching 
for methods to limit its effects.  

This problem has been widely studied and 
academic literature and industrial research abounds 
with attempts to deal with it. We may divide these 

approaches in two categories. This first approach 
tries to eliminate the effects of the motion blur, 
meaning that there will be a normal image 
acquisition (with a long enough exposure time that 
includes blur) and subsequently camera trajectory is 
estimated and to restore it. The restoration and the 
estimation processes may be simultaneous and real-
time (the so-called optical image stabilization) or 
consecutive and digital (by means of de-
convolution). However this alternative implies the 
use of motion sensors (which came as an extra 
circuit) and therefore contradict the size-diminishing 
goal. 

The second approach works on avoiding the 
circumstances that generate motion blur. This is 
achieved by reducing the exposure time below the 
”motion limit”. The motion limit may be based on 
the ”q over f35 rule of thumb” [2] or dynamically 
deduced from computing the misalignment on 
consecutive frames for more precise indication of 
camera motion [3]. This alternate solution may be 
easily implemented on existing digital camera 
hardware, without any changes in the acquisition 
process. However, if such a solution is chosen, the 
under-exposed image must be amplified so to 
provide proper luminance and colour saturation 
level. This amplification consists of pixel-based 
multiplication and this operation must avoid 
introducing artefacts that will decrease the perceived 
image quality. As it will be shown in this paper, the 
Logarithmic Image Processing model provides a 
means for resolving this problem. 



 Considering the arguments presented above, 
we structure the remainder of this paper as follows: 
we shall begin by describing the most important 
features of the Logarithmic Image Processing model, 
we shall explain why it is suitable for the deemed 
purposes, and describe the actual implementations of 
the low-light enhancement. The paper ends with a 
discussion of the obtained results, conclusions and 
future possible work. 
 

II  LOGARITHMIC MODELS AND CRF 
The homomorphic theory introduced by 

Oppenheim [4] may be considered the starting point 
of the logarithmic image processing (LIP) models. 
The key is a homomorphic function, which exhibits a 
logarithmic behaviour and is used for re-mapping the 
original image value range into an “artificial” 
domain enriched with a superior algebraic structure. 
Notable implementations of the LIP models are 
given by Jourlin and Pinoli [5] (that we will 
subsequently call “classical” model) and respectively 
by Pătraşcu [6].  

The classical logarithmic model is generated 
via a basic isomorphic transform Ψ that maps the 
image value definition domain (typically denoted as 
the interval [0, M]), into the logarithmic space: 
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In the equations (1) and (2) above, h is the 

gray-tone function of the original image 
( ];0[ Mh ∈ ), and f is the corresponding absorption 
function in the logarithmic space.  

The LIP model upgrades a set of transmitted 
light images to the status of vector space structure, 
with an additive law and a scalar - multiplicative 
law, as defined in equations (3) and (4) below: 
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It is of paramount importance to notice that 

the resulting algebraic structure is closed with 
respect to the operations of addition and 
multiplication defined above. This is a major 
advantage of the LIP models, in sharp contrast with 
the real number addition/ multiplication classically 
used for the processing of image data, that may 
produce  results  outside  the  normal  [0; M]  value  

Figure 1: CRF to Log Amplification example: 
typical consumer camera CRF (solid line) and logarithmic 

multiplication with 78.1=α  (dotted line). 
 

range. Dealing with such overshot is usually done by 
hard limitation (truncation) of the resulting image 
values, yielding a loss of information and lack of 
physical, real-world support. 

The colour extension of the classical LIP is 
straightforward under a marginal RGB processing 
approach. 

Even though one may find Pătraşcu’s model 
[6] more mathematically elaborated, the classical LIP 
model [5] focuses on modelling the acquisition of 
images obtained from light transmitted through 
transparent environments, such as the classical 
photographic film [7]. The transfer function of any 
digital still camera, called the camera response 
function, exhibits a similar behaviour.  

The problem of experimentally obtaining the 
camera response function (CRF) was intensively 
studied. The first attempts were based on capturing 
under a single exposure a uniformly illuminated 
graphic chart containing patches of known 
reflectance, such as the Gretag Macbeth colour chart 
[9]. Later, Mitsunaga and Nayar [10] proposed the 
modelling of the CRF by a low degree polynomial. 
The most common and relevant technique with 
respect to the current addressed issue is the solution 
proposed by Mann and Picard [11] that assumes a 
gamma function shaped CRF. This approach leads to 
the similar models for the CRF and the LIP 
multiplication, such as illustrated also in Figure 1. 

One may argue that the use of the 
experimentally derived CRF provides a more 
accurate result for a given digital camera. Still, the 
use of the LIP multiplication provides more 
generality (which means that brings the advantage of 
portability) and, furthermore, allows an intuitive 
reasoning on the derivation and deployment of the 
method. Another strong point of the classical LIP 
model is its consistency with Weber’s contrast law 
[8], which proved that human visual system has a 
logarithmic response to a linear variation of the 
intensity of the incident light. The same consistency  



 
has been a guideline for photographic film 
manufacturers.  

 
 III  LOW LIGHT ENHANCEMENT 

It is a known fact that underexposing and amplifying 
is a solution for reducing the exposure. The camera 
computes the exposure time using following 
equation 
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where EV is the exposure value, the log of t forms the 
time value (TV), N is the relative diaphragm opening 
(by taking the log, the aperture value, AV, is formed), 
Φ is the incident light, S is the sensors sensibility (or 
for digital cameras – the amplification) and K is a 
known constant. If the aperture, which has influence 
over the depth of field, is held constant, while the 
incident light is fixed, then there is a direct relation 
between the exposure time and the sensitivity. For 
older film-cameras, sensitivity was given by the 
amount of photo-sensible particles per square unit. If 
a larger density is used then a shorter time is required 
to capture the number of particles that change their 
properties under light to produce the image contrast. 
In the current digital cameras this solution was 
replaced by high ISO mode, where the S parameter 
determines the analogue-to-digital amplification. 

A typical low-light enhancement method 
firstly captures an image with a short exposure time. 
This image is hand motion free but under-exposed.  
Next, the image is amplified until its luminance and 
colour levels match that of a reference. The reference 
may be intrinsic as the one provided by equation (5) 

 
with a large value for ISO parameter S or it may be 
an external one, such as a different image as 
described in [12].  

The reference in the latter approach is a 
correctly exposed image, which may be blurred. This 
provides additional information than a single number 
derived from equation (5). For the currently 
proposed solution, an important demand is the 
relative short period between the capture moments of 
the two required images: the reference and the main 
image. This helps prevent large geometrical 
misalignments and, hence, avoid the time-consuming 
image registration required in [12].  

Let us denote the main, low-light, image, 
which is of   N x P resolution with F(i,j), i=1,…N, 
j=1,..P. The reference image (which we shall denote 
by G(i,j)) may have the same or lower resolution 
than the subject, image. If different resolutions are 
used one may a use a nearest neighbour interpolation 
to even the image sizes to the highest resolution   

The enhancement method works in two steps; 
first, it performs a rough global amplification; later, 
it refines individual pixels by taking into 
consideration local information. In the following 
paragraphs, we shall proceed with describing the 
actual method.  

Given the two images, G and F, the rough 
amplification is performed by considering a reduced 
set of (spatially matching) pixels from each image: 

GGs ⊂  and, respectively FFs ⊂ , and by means of 
linear regression, computing a pair of coefficients 
(c1and c2), [13], so that: 

  

(a) (b) (c) 

(d) (e) (f) 
Figure 2. (a) Example of low-light main image, (b) reference, motion blurred image, (c) ideal image, 

(d) logarithmic enhanced image, (e) linear enhanced image, (f) auto-contrast image.     
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  The image computed using the coefficients 

from equation (6), 211 cFcF s += , corresponds in 
most cases with the standard (simple reference) 
amplification methods. However, we must observe 
that the results are highly dependent on the choice 
over the set of reduced pixels, which may or may not 
be representative for the image. If full resolution 
image is used, blur artefacts may be transferred from 
the reference image to the main image. Furthermore, 
if classical real addition and multiplication are used 
in equation (6), the result is sensitive to range 
overflow. Therefore, an implementation based on 
equations (3) and (4) is more practical. 

The second step of the enhancement, the fine 
amplification is performed locally, in the sense that 
different amplification factors are used for different 
pixels. To be more explicit, we shall determine the 
matrix W(i,j), with i=1,…N and respectively j=1,..P, 
so that: 
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The computation of W’s coefficients relies on 

the 1-D adaptive filtering theory which has the 
obvious advantage of being computationally 
efficient. The actual implementation implies the use 
of a filter with a single adaptive coefficient.  But first 
the 2-D images are converted into 1-D vectors by 
arranging them in lexicographic order:  
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 The equation that updates the filter is taken 

from sign-data LMS (Least Mean Square) algorithm 
and it makes use of the fact that the input data, 

)(1 kF   is always positive: 
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where µ(k) is the step size (fixed or variable), the 
e(k) is the error signal computed as: 
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For accurate implementation, one may use a 

fixed step size µ(k) = µ = 0.005 and it may initialize 
the filter value with neutral multiplication element 
W(1)=1. 

As previously discussed, if standard 
multiplication is used in equation (7), range overflow 
situations are often encountered in highly illuminated 
areas. Furthermore, in the same hypothesis of linear 
amplification, if one will extend the method to colour 
(multi-planar) images by replicating the algorithm 
for each colour plane, the resulting image will have 
over-saturated colours. In order to prevent these 
problems we are using logarithmic multiplication (as 
described by eq. (4)). 

Practical implementation tends to simplify the 
described method. To be more precise, a single 
coefficient may be used in rough amplification 

FcF 11 =  and a set of reduced possible values for 
c1. In this case, the local amplification may be 
rewritten as: 

   

  
( )kW

D
kFDDkF ⎟
⎠
⎞

⎜
⎝
⎛ −−=

)(1)( 1
2

        (10) 

 
where D is the maximum image intensity (e.g. 255).  
Eq. (10) is rather difficult to be implemented but 
may be substituted with a finite set of look-up-tables, 
without loss in image quality.  

 
IV  RESULTS AND DISCUSSIONS 
For demonstration purposes, we considered a 

low-light scene containing the Gretag Macbeth 
Colour Chart placed on a wooden support. The input 
images (main and reference image), as well as the 
results may be seen in figure 2. The reference (Fig. 2 
(b)) and main image (Fig. 2 (a)) were obtained with a 

(a) (b) (c) 
Figure 3. Example of method failing. The underexposed subject image (a) if logarithmically amplified (c), 
has a poor color reproduction if compared with the motion blurred reference image (b), as one can see in 

the background     



consumer camera held in the hands; thus they are 
susceptible to motion blur. The under-exposed 
subject image (Fig. 2, (a)) was obtained by forcing 
the exposure value to be EV=-2. The ideal image 
(which is not affected by motion blur) was recorded 
with a tripod-mounted camera. As results, we 
showed our image (d), the image obtained by 
described amplification but performed in a linear 
space (e) (which is obviously over saturated in the 
upper part – the wooden support) and respectively 
the subject image processed by typical auto-contrast 
and auto-saturation algorithms (f). The last 
possibility is well known and it is used in the world 
of amateur photographers; its result suffers from 
poor colour reproduction. Concluding, it is easy to 
observe that the best results are obtained by using the 
two step logarithmic amplification. 

Furthermore, we considered an extensive 
testing procedure which includes larger data sets, 
with different scenes, but under the constraint that 
there is no misalignment between the ideal image 
and the resulting one. Under these circumstances, we 
were able to compute a Normalized Mean Square 
Error. A short summary of the results may be seen in 
Table 1. As one can see, the results are degrading if 
we underexposing more; however the logarithmic 
amplification provides the most reliable results in all 
conditions.  
 

 LOG LIN Auto 
EV=-1 0.0053 0.0214 0.0120 
EV=-2 0.0063 0.0254 0.0182 

Table 1. Values of the NMSE for the logarithmic 
amplification, linear amplification and auto-contrast if the 
low-light image was under-exposed with EV=1- or EV=-2 

stops. 

The method has limited performances in case 
of severely underexposed images with more than 
EV=-2 (Figure. 3 shows poor colour reproduction in 
this case) or sizeable misalignment between acquired 
images.  Under such conditions even if our method is 
the most reliable, it does not pass a visual inspection.  

 
 

V  CONCLUSIONS 
In this paper we proposed a method that 

makes use of the similarity between digital still 
camera response function and the LIP multiplication 
to derive a technique for low-light images 
enhancement. The method has two steps (a rough 
and global amplification followed by a smooth and 
local information based enhancement). It can be 
easily implemented in existing digital camera and 
mobile phone embedded platforms and gives better 
results than other known solutions. 
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