
An efficient implementation of the kernel affine

projection algorithm

Felix Albu, Dinu Coltuc

Faculty of Electronics

Valah ia University of Targoviste

Targoviste, Romania

felix.albu@valah ia.ro

Kiyoshi Nishikawa

Faculty of System Design

Tokyo Metropolitan University

Tokyo, Japan

knishikawa@m.ieice.org

Marius Rotaru

Dept. of Telecommunications

University Politehnica of Bucharest

 Bucharest, Romania

marius.rotaru@gmail.com

Abstract— In this paper an efficient kernel affine projection

algorithm using dichotomous coordinate descent iterations is

proposed. The effectiveness of the proposed algorithm for

nonlinear system identification and forward prediction is

confirmed by computer simulations.

Keywords—kernel affine projection algorithm; dichotomous

coordinate descent; nonlinear system identification; forward
prediction;

I. INTRODUCTION

In system identification applications, the main goal is to

identify an unknown system using an adaptive filter [1].

Linear adaptive filters have been used in a variety of

applications, e.g., echo [2-4], act ive noise control [5-6],

equalization in wireless communication channels [7] etc. One

of the most promising algorithms is the affine projection (AP)

algorithm [8] and its efficient implementations (e.g. [3-4]).

 Recently, as an extension of the linear counterparts, kernel

adaptive filters have been proposed that enable us to

adaptively identify non-linear systems [8]. Kernel adaptive

filters [9] are derived by applying the kernel method to linear

adaptive filters, and several algorithms were proposed, i.e., the

kernel recursive least squares (KRLS) [10], the kernel least

mean square (KLMS) [11], the kernel normalized LMS

(KNLMS) [12], the kernel proportionate NLMS (KPNLMS)

[13], kernel affine project ion (KAPA) [12], the kernel ERLS-

DCD [14] algorithms etc.
 The paper proposes an efficient implementation of the

kernel affine projection algorithm inspired from the methods
used for the affine projection algorithms. There is a

resemblance between KAPA and the variable order affine
projection algorithms [3]. The matrix updating procedure for a

variable projection order affine projection was firstly presented

in [2]. Also, the dichotomous coordinate descent (DCD)
iterations [15] were firstly used for solving the linear systems

of the fast affine projection algorithm in [3]. To the best of our

knowledge, the DCD technique hasn’t been applied yet to the

kernel affine projection based algorithms.

The paper is organized as follows. Section II presents the
proposed implementation, while in Section III its numerical

complexity is investigated. The simulation results presented in
Section IV compare the proposed algorithm with KAPA in

different scenarios. Finally, the conclusions are given.

II. DCD-KAPA

A. A review of the kernel affine projection algorithm

The conventional kernel filters were described in many papers

(e.g. [9], [12], [16]). The input signal  x n at moment n is

transformed into a high dimensional feature space F by a

transformation function  x and the output of the adaptive

filter is given by

        ,Tf n n n x x w (1)

where        0 1 1, ,..., ,Mn w n w n w n   w is the filter

coefficient vector of the adaptive filter,  iw n , and M are the

i-th coefficient of the filter at moment n and the length of the

filter respectively, and

       , 1 ,..., 1 .n x n x n x n M     x We assume that the

filter vector  nw can be expressed as a linear combination

of m vectors   j y as

This work was supported by a grant of the Romanian National Authority for

Scientific Research, CNCS - UEFISCDI, project number PN-II-ID-PCE-

2011-3-0097 and by the Sectorial Operational Programme “Human

Resources Development” 2007-2013 of the Romanian Ministry of

Labour, Family and Social Protection through the Financial Agreement

POSDRU/107/1.5/S/76813.

    
1

.
m

j
j

n j


 w y
(2)

The vectors  jy are a subset of  , 0,1,..., 1l l n x and j

is the weight corresponding to  jy . Then, the output in (1) is

expressed [9] as

         
1

.
m

T

j
j

f n n j


  x x y
(3)

In the kernel adaptive filter,    1 2, ,...,
T

mn   α is the

coefficient vector of the adaptive filter instead of  nw [11-

12]. In these algorithms the inner product

     T n j x y in Eq. (3) is obtained via the kernel

function  ,k   used to calculate the inner product in the space

F [11]:

     , , TX k   a b a b a b (4)

The Gaussian kernel is defined as:

   2
, exp ,k   a b a b

(5)

where  is the Euclidean norm and  is the kernel

parameter. Another kernel is the Laplace kernel:

   , exp ,k   a b a b (6)

The kernel AP algorithm (KAPA) was proposed in [12]. First,

we rewrite Eq. (3) as       f n n nx h α where

           

 1

, 1 ,..., ,

 ,..., .

T

T

m

n k n k n m

h h

   



h x y x y

(7)

We define the matrix D, called the dictionary, as

   1 ,..., .m   D y y The vectors stored in the dictionary D

are m (m n) input vectors of the previous time, where m is a

variable determined by the algorithm below. Let us denote D

at time n by nD . Then, nD and  nh are updated according

to the pseudo algorithm from [16]. The size of nD is

increased if      0
1,...,

max ,
j m

k n j 


x y [12]. The value of the

threshold  0 0..1  is determined according to the sparseness

of the signal [16]. The kernel output error vector is

       1n n n n  e d H α (8)

where      ,... 1
T

n d n d n p    d , p is the order and

 nH denotes the p-by-m matrix whose (i,j)th entry is

    1 ,k n i j x y . If  is a small regularization and we

note

        
1

Tn n n n


 s H H I e
(9)

the filter coefficients  nα of KAPA are updated as follows:

[12]:

       1 Tn n n n  α α H s (10)

where  is the normalized step-size parameter in the range

0 2  .

B. The proposed DCD-KAPA

It can be noticed that, if we note      Tn n n  R H H I

Eq. (9) is equivalent with solving the linear system

     n n nR s e (11)

This linear system can be solved by using the DCD iterations.

The DCD algorithm is a multip lication-free and division-free

algorithm based on binary representation of elements of the

solution vector with bM bits within an amplitude range

,s sH H   , where sH is chosen as a power of two [15]. The

divisions and multip lications are replaced by bit-shift

operations. The DCD iterations start by updating the most

significant bit of its elements and proceeds to less significant

bits. The algorithm complexity is limited by uN , the

maximum number of “successful” iterations. The peak

complexity of the DCD algorithm for the linear system of Eq.

(11),
bM and

uN , is  2 u bp N M additions. Another

efficient DCD version was proposed in [17] and finds a

‘leading’ element of the solution to be updated. We will

concentrate on the first option implemented as follows [3]:

Initializat ion:   0, , 0.s sn d H q  s

for 1:

 = /2

(j) Flag = 0

b

s s

o M

d d



     

      

        

for 0 : 1

 if > / 2 ,then

 Flag = 1, 1

 +sgn

 =e sgn :,

 if , stop

 end of the loop

 if Flag = 1, go to (j

i s ii

i i i s

i s

u

i m

e n d n

q q

s n s n e n d

n n e n d i

q N

i

 

  

 

 

  





R

e R

)

 end of the loopo 

C. Efficient implementation of the proposed method

The computation of the matrix  nR can be made in an

efficient way taking into account its structure. The size of this

square matrix varies depending on the projection order. A

similar situation is encountered in variable projection affine

projection algorithms [2]. There are two possible situations. In

the case without order increase, the matrix  nR is updated

by replacing only the first row and column with the vector

 nr defined below, while the bottom  1m m  sub-matrix

is replaced with the top  1m m  sub-matrix of  1nR .

For the first m iterations the full  1nR is used. The first

element of  nr is    Tn n h h while the remaining m – 1

elements are given by    n nH h where  nH represents the

lower  1p m  sub-matrix of  nH .

In the second situation, when there is an order increase, the

matrix  nR is updated by replacing the first row and column

with a modified vector. The last m – 1 elements of the last

column of  T nH are taken into account in order to update

 nR and denoted by  nq . For this case, remaining m – 1

elements of  nr are given by      n n nH h q , while the

bottom  1m m  sub-matrix is replaced with the sum

between the top  1m m  sub-matrix of  1nR and

   T n nq q . This update leads to important complexity

reduction, as it is shown in the next section.

III. NUMERICAL COMPLEXITY

Table 1 reports the computational costs of KAPA and DCD-

KAPA. It can be seen that the number of multip lications and

additions of DCD-KAPA increase linearly with m, while the

numerical complexity of KAPA is  2O m [12]. The number

of additions of DCD-KAPA depends on the bM and uN . Fig.

1 shows the ratios of numerical complexit ies of DCD-KAPA

and KAPA for different
uN values, p = 5 and 16bM  . It can

be seen that the savings depend on the
uN value and if there is

or not an order increase.

Fig. 1: A comparison of the complexity ratios of DCD-KAPA and KAPA in

terms of multiplications and additions and different
uN values; without order

increase (solid line), with order increase (dotted line).

TABLE I. COMPUTATIONAL COST PER ITERATION OF KAPA AND DCD-
KAPA

 without order increase with order increase

KAPA[12] x  2 32p p m p p    2 3 22 2p p m p p p   

+  2 3 22p p m p p    2 3 22 1p p m p p p    

DCD-
KAPA

x 3pm p 23 2pm p p 

+  3 2 1u bpm p N M    23 1 2 u bpm p p N M   

The savings are substantial (e.g. around 50 % for 5uN ). As

expected, a lower
uN value leads to higher complexity

savings. The computational cost of  nh depends on the

selected kernel and it is not taken into account [12]. The final

size of a dictionary of kernel functions is finite and after a
transient period during which the order of the model increases,

computational complexity is reduced to that without order
increase [12].

IV. SIMULATION RESULTS

The performance of the proposed algorithm for system

identification and forward prediction problems were

investigated by computer simulations. For all the simulations a

white Gaussian noise of SNR =40 dB with zero mean was

added, 0.07  , 0 0.3  , and 0.01  were used. The data

were generated from the init ial condition  0 0.5v  [12]. The

input was sampled from a zero-mean Gaussian distribution

with standard deviation 0.25.

      

   2

1.1exp 1 ; v n v n u n

d n v n

   



.

(12)

The system output was corrupted by an additive zero-mean

white Gaussian noise with standard deviation equal to 1 and

the signal-to-noise ratio was −4.0 dB [12]. The Laplace kernel

with 0.35  is used. Fig. 2 shows the comparison of the

performance of KAPA and DCD-KAPA in terms of the mean

squared errors (MSEs) averaged over 100 independent trials.

The filter length was M = 5. It can be seen from Fig. 2 than

DCD-KAPA with 10 DCD iterations obtains a close

performance to KAPA. As expected, increasing the number of

updates lead to improved approximation (around 2 dB for 1

update and less than 0.3 dB for 10 updates).

Fig. 3 examines the performance of the investigated

algorithms for a forward predict ion problem. The Gaussian

kernel with 0.13  was used. For the forward prediction

example the following equation was used:

       

     

  

2

2

0.8 0.5exp 1 1

 0.3 0.9exp 1 2

 +0.1sin 1 .

x n x n x n

x n x n

x n 


     

   



(13)

It can be noticed from Fig. 3 that DCD-KAPA with

5uN  has almost identical performance with KAPA. The

same conclusions were obtained for previous situations for
higher filter lengths.

Fig. 2: a) Comparison of convergence characteristics of KAPA and DCD-
KAPA with different number of updates applied to system identification; b)
the MSE difference.

Fig. 3: a) Comparison of convergence characteristics of KAPA and DCD-
KAPA with different number of updates applied to a forward prediction; b)
the MSE difference.

The influence of the coherence value
0 is examined in Fig. 4

for the previous test cases. Steady-state performance of the

algorithms was measured by the mean-square prediction error

over the last 500 samples of each time series averaged over

100 independent runs. The value of
0 was varied from 0.05

to 0.95 in increments of 0.05. It can be seen from Fig. 4 that

the best coherence value depends on the application and the

filter length. For example in case of the first example, the

optimum values for
0 are 0.7, 0.2 and 0.35 fo r p = 2, p = 5

and p = 10 respectively. In the forward prediction case, the

optimum values for
0 are 0.9, 0.75 and 0.8 fo r p = 2, p = 5

and p = 10 respectively. These parameters are the same for

DCD-KAPA for sufficient number of updates.

Fig. 4: Mean MSE of KAPA for the last 500 iterations for different 0 values

in three cases: p = 2, p = 5 and p = 10; a) nonlinear system identification case;
b) forward prediction case

V. CONCLUSIONS

In this paper, an efficient implementation of KAPA using

dichotomous coordinate descent iterations is proposed. The

suitable number of DCD updates was investigated for system

identification and forward predict ion situations. The influence

of the coherence parameter has been studied too. It is shown

that the proposed DCD-KAPA implementation can achieve an

important complexity reduction over KAPA.

REFERENCES

[1] A.H. Sayed, Fundamentals of Adaptive Filtering, John Wiley & Sons,
2003.

[2] F. Albu, C. Paleologu, J. Benesty, “A Variable Step Size Evolutionary
Affine Projection Algorithm”, in Proc. of ICASSP 2011, Prague, Czech
Republic, May 2011, pp. 429-432.

[3] Y. Zakharov and F. Albu, “ Coordinate descent iterations in fast affine
projection algorithm ”, IEEE Signal Processing Letters, Vol. 12, Issue 5,
May 2005, pp: 353-356.

[4] F. Albu, D. Coltuc, D. Comminiello, M. Scarpiniti, “The variable step
size regularized block exact affine projection algorithm”, ” in Proc. of
ISETC 2012, Nov. 2012, pp. 283-286.

[5] A. Gonzales, F. Albu, M. Ferrer, M. Diego, “Evolutionary and variable
step size affine projection algorithms for active noise control ”, IET
Signal Processing, Special issue on active noise control, 2013, in press.

[6] F. Albu, “Leading Element Dichotomous Coordinate Descent
Exponential Recursive Least Squares Algorithm for Multichannel Active
Noise Control”, in Proc. of AAS Acoustics 2012, Nov. 2012, pp. 1-4.

[7] G. E. Bottomley, "Channel Equalization for Wireless Communications:
From Concepts to Detailed Mathematics", John Wiley & Sons, 2011

[8] K. Ozeki and T. Umeda, “An adaptive filtering algorithm using an
orthogonal projection to an affine subspace and its properties”, Electron.
Commun. Jpn., vol. 67-A, no. 5, pp. 19–27, 1984.

[9] W. Liu, J.C. Principe, and S. Haykin, Kernel Adaptive Filtering, Wiley,
2010.

[10] Y. Engel, S. Mannor, and R. Meir, The Kernel Recursive Least-Squares
Algorithm, IEEE Transactions on Signal Processing, vol. 52, pp. 2275–
2285, 2004.

[11] W. Liu, P.P. Pokharel, and J. C. Principe, The Kernel Least-Mean-
Square Algorithm, IEEE Transactions on Signal Processing, vol. 56, pp.
543–554, 2008.

[12] C. Richard, J. C. M. Bermudez, and P. Honeine, Online Prediction of
Time Series Data With Kernels, IEEE Transactions on Signal
Processing, vol. 57, pp. 1058–1067, 2009.

[13] F. Albu, K. Nishikawa, “The Kernel Proportionate NLMS Algorithm”,
accepted at EUSIPCO 2013.

[14] Y. Ogawa and K. Nishikawa, A Kernel Adaptive Filter based on ERLS-
DCD Algorithm, in Proc. of Intl Tech. Conf. Circuits Systems,
Computer, Communications 2011, no.P4-13, pp.1228–1231, 2011.

[15] Y. Zakharov, T. Tozer, Multiplication-free iterative algorithm for LS
problem, Electron. Lett., 2004, 40, (9), pp. 567-569.

[16] H. Nishikawa, and H. Nakazato, Mixture structure of kernel adaptive
filters for improving the convergence characteristics, in Proc. of
APSIPA 2012, 2012.

[17] J. Liu, Y. Zakharov, B. Weaver, Architecture and FPGA Design of
Dichotomous Coordinate Descent Algorithms, IEEE Trans. Circuits and
Systems. Part I: Regular Papers, 56(11):2425-2438, Nov., 2009.

The codes for the proposed algorithms can be obtained from

http://falbu.50webs.com/List_of_publications_ka.htm

The reference fo r the paper is:

F. Albu, D. Coltuc, K. Nishikawa, M. Rotaru, “An efficient

implementation of the kernel affine projection algorithm”, in

Proc. of ISPA 2013, September 2013, Trieste, Italy, pp. 342-

346

http://falbu.50webs.com/List_of_publications_ka.htm

