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Abstract— In this paper an efficient kernel affine projection 

algorithm using dichotomous coordinate descent iterations is 

proposed. The effectiveness of the proposed algorithm for 

nonlinear system identification and forward prediction is 

confirmed by computer simulations. 
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I.  INTRODUCTION  

In system identification applications, the main goal is to 

identify an unknown system using an adaptive filter [1]. 

Linear adaptive filters have been used in a variety of 

applications, e.g., echo [2-4], act ive noise control [5-6],  

equalization in wireless communication channels  [7] etc. One 

of the most promising algorithms is the affine projection (AP) 

algorithm [8] and its efficient implementations (e.g. [3-4]).  

      Recently, as an extension of the linear counterparts, kernel 

adaptive filters have been proposed that enable us to 

adaptively identify non-linear systems [8]. Kernel adaptive 

filters [9] are derived by applying the kernel method to linear 

adaptive filters, and several algorithms were proposed, i.e., the 

kernel recursive least squares (KRLS) [10], the kernel least 

mean square (KLMS) [11], the kernel normalized LMS 

(KNLMS) [12], the kernel proportionate NLMS (KPNLMS) 

[13], kernel affine project ion (KAPA) [12], the kernel ERLS-

DCD [14] algorithms etc.  
 The paper proposes an efficient implementation of the 

kernel affine projection algorithm inspired from the methods 
used for the affine projection algorithms. There is a 

resemblance between KAPA and the variable order affine 
projection algorithms [3]. The matrix updating procedure for a 

variable projection order affine projection was firstly presented 

in [2]. Also, the dichotomous coordinate descent (DCD) 
iterations [15] were firstly used for solving the linear systems 

of the fast affine projection algorithm in [3]. To the best of our 

knowledge, the DCD technique hasn’t been applied yet to the 

kernel affine projection based algorithms. 

The paper is organized as follows. Section II presents the 
proposed implementation, while in Section III its numerical 

complexity is investigated. The simulation results presented in 
Section IV compare the proposed algorithm with KAPA in 

different scenarios. Finally, the conclusions are given.  

 

II. DCD-KAPA  

A. A review of the kernel affine projection algorithm 

The conventional kernel filters were described in many papers 

(e.g. [9], [12], [16]). The input signal  x n  at moment n is 

transformed into a high dimensional feature space F by a 

transformation function  x  and the output of the adaptive 

filter is given by  

 

        ,Tf n n n x x w  (1) 

 

where        0 1 1, ,..., ,Mn w n w n w n   w  is the filter 

coefficient vector of the adaptive filter,   iw n , and M are the 

i-th coefficient of the filter at moment n and the length of the 

filter respectively, and 

       , 1 ,..., 1 .n x n x n x n M     x  We assume that the 

filter vector  nw  can be expressed as a linear combination  

of m vectors   j y  as 
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The vectors  jy  are a subset of  , 0,1,..., 1l l n x  and j  

is the weight corresponding to  jy . Then, the output in (1) is 

expressed [9] as 
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In the kernel adaptive filter,    1 2, ,...,
T

mn   α is the 

coefficient vector of the adaptive filter instead of  nw  [11-

12]. In these algorithms the inner product 

     T n j x y in Eq. (3) is obtained via the kernel 

function  ,k    used to calculate the inner product in the space 

F [11]: 

 

     ,             , TX k   a b a b a b  (4) 

 

The Gaussian kernel is defined as: 

 

   2
, exp ,k   a b a b  

(5) 

 

where    is the Euclidean norm and   is the kernel 

parameter. Another kernel is the Laplace kernel: 

 

   , exp ,k   a b a b  (6) 

 

The kernel AP algorithm (KAPA ) was proposed in [12]. First, 

we rewrite Eq. (3) as       f n n nx h α where  
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(7) 

 

We define the matrix D, called the dictionary, as 

   1 ,..., .m   D y y  The vectors stored in the dictionary D 

are m ( m n ) input vectors of the previous time, where m is a  

variable determined by the algorithm below. Let us denote D 

at time n by nD . Then, nD  and  nh  are updated according 

to the pseudo algorithm from [16]. The size of nD  is 

increased if      0
1,...,

max ,
j m

k n j 


x y [12]. The value of the 

threshold  0 0..1   is determined according to the sparseness 

of the signal [16]. The kernel output error vector is  

 

       1n n n n  e d H α  (8) 

 

where      ,... 1
T

n d n d n p    d , p is the order and 

 nH  denotes the p-by-m matrix whose (i,j)th entry is 

    1 ,k n i j x y . If   is a small regularization and we 

note  
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the filter coefficients  nα of KAPA are updated as follows: 

[12]:  

 

       1 Tn n n n  α α H s  (10) 

 

where   is the normalized step-size parameter in the range 

0 2  . 

B. The proposed DCD-KAPA 

It can be noticed that, if we note      Tn n n  R H H I  

Eq. (9) is equivalent with solving the linear system 

 

     n n nR s e  (11) 

 

This linear system can be solved by using the DCD iterations. 

The DCD algorithm is a multip lication-free and division-free 

algorithm based on binary representation of elements of the 

solution vector with bM  bits within an amplitude range 

,s sH H   , where sH   is chosen as a power of two [15].  The 

divisions and multip lications are replaced by bit-shift 

operations. The DCD iterations start by updating the most 

significant bit of its elements and proceeds to less significant 

bits. The algorithm complexity is limited by uN , the 

maximum number of “successful” iterations. The peak 

complexity of the DCD algorithm for the linear system of Eq. 

(11), 
bM  and 

uN , is  2 u bp N M  additions. Another 

efficient DCD version was proposed in [17] and finds a 

‘leading’ element of the solution to be updated. We will 

concentrate on the first option implemented as follows [3]: 
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C. Efficient implementation of the proposed method 

The computation of the matrix  nR  can be made in an 

efficient way taking into account its structure. The size of this 

square matrix varies depending on the projection order. A 

similar situation is encountered in variable projection affine 

projection algorithms [2]. There are two possible situations. In 

the case without order increase, the matrix  nR  is updated 

by replacing only the first row and column with the vector 

 nr  defined below, while the bottom  1m m   sub-matrix 

is replaced with the top  1m m   sub-matrix of  1nR . 

For the first m iterations the full  1nR is used. The first 

element of  nr  is     Tn n h h  while the remaining m – 1 

elements are given by    n nH h  where  nH  represents the 

lower  1p m   sub-matrix of  nH .   

In the second situation, when there is an order increase, the 

matrix  nR  is updated by replacing the first row and column 

with a modified vector. The last m – 1 elements of the last 

column of  T nH  are taken into account in order to update 

 nR  and denoted by  nq . For this case, remaining m – 1 

elements of  nr  are given by      n n nH h q , while the 

bottom  1m m   sub-matrix is replaced with the sum 

between the top  1m m   sub-matrix of  1nR and 

   T n nq q . This update leads to important complexity 

reduction, as it is shown in the next section.  

III. NUMERICAL COMPLEXITY 

Table 1 reports the computational costs of KAPA and DCD-

KAPA. It can be seen that the number of multip lications and 

additions of DCD-KAPA increase linearly with m, while the 

numerical complexity of KAPA is  2O m  [12]. The number 

of additions of DCD-KAPA depends on the bM  and uN . Fig. 

1 shows the ratios of numerical complexit ies of DCD-KAPA 

and KAPA for different 
uN  values, p = 5 and 16bM  . It can 

be seen that the savings depend on the 
uN  value and if there is 

or not an order increase.  

 

Fig. 1: A comparison of the complexity ratios of DCD-KAPA and KAPA in 

terms of multiplications and additions and different 
uN  values; without order 

increase (solid line), with order increase (dotted line). 

TABLE I.  COMPUTATIONAL COST PER ITERATION OF KAPA AND DCD-
KAPA 

 without order increase with order increase  

KAPA[12] x  2 32p p m p p     2 3 22 2p p m p p p     

+  2 3 22p p m p p     2 3 22 1p p m p p p      

DCD-
KAPA 

x 3pm p  23 2pm p p   

+  3 2 1u bpm p N M     23 1 2 u bpm p p N M     

 

The savings are substantial (e.g. around 50 % for 5uN  ). As 

expected, a lower 
uN  value leads to higher complexity 

savings. The computational cost of  nh  depends on the 

selected kernel and it is not taken into account [12]. The final 

size of a dictionary of kernel functions is finite and after a 
transient period during which the order of the model increases, 

computational complexity is reduced to that without order 
increase [12].    

IV. SIMULATION RESULTS 

The performance of the proposed algorithm for system 

identification and forward prediction problems were 

investigated by computer simulations. For all the simulations a 

white Gaussian noise of SNR =40 dB with zero mean was 

added, 0.07  , 0 0.3  , and 0.01   were used. The data 

were generated from the init ial condition  0 0.5v  [12]. The 



input was sampled from a zero-mean Gaussian distribution 

with standard deviation 0.25. 

 

      

   2

1.1exp 1 ;  v n v n u n

d n v n

   



. 

(12) 

 

The system output was corrupted by an additive zero-mean 

white Gaussian noise with standard deviation equal to 1 and 

the signal-to-noise ratio was −4.0 dB [12]. The Laplace kernel 

with 0.35   is used. Fig. 2 shows the comparison of the 

performance of KAPA and DCD-KAPA in terms of the mean 

squared errors (MSEs) averaged over 100 independent trials. 

The filter length was M = 5. It can be seen from Fig. 2 than 

DCD-KAPA with 10 DCD iterations obtains a close 

performance to KAPA. As expected, increasing the number of 

updates lead to improved approximation (around 2 dB for 1 

update and less than 0.3 dB for 10 updates).  

Fig. 3 examines the performance of the investigated 

algorithms for a forward predict ion problem. The Gaussian 

kernel with 0.13   was used. For the forward prediction  

example the following equation was  used: 

 

       

     

  

2

2

0.8 0.5exp 1 1

       0.3 0.9exp 1 2

       +0.1sin 1 .

x n x n x n

x n x n

x n 


     

   



 

(13) 

It can be noticed from Fig. 3 that DCD-KAPA with 

5uN  has almost identical performance with KAPA. The 

same conclusions were obtained for previous situations for 
higher filter lengths. 

  

 

Fig. 2: a) Comparison of convergence characteristics of KAPA and DCD-
KAPA with different number of updates applied to system identification; b) 
the MSE difference.   

  

 

Fig. 3: a) Comparison of convergence characteristics of KAPA and DCD-
KAPA with different number of updates applied to a forward prediction; b) 
the MSE difference.  

The influence of the coherence value 
0  is examined in Fig. 4 

for the previous test cases. Steady-state performance of the 

algorithms was measured by the mean-square prediction error 

over the last 500 samples of each time series averaged over 

100 independent runs. The value of 
0  was varied from 0.05 

to 0.95 in increments of 0.05. It can be seen from Fig. 4 that 

the best coherence value depends on the application and the 

filter length. For example in case of the first example, the 

optimum values for 
0  are 0.7, 0.2 and 0.35 fo r p = 2, p = 5 

and p = 10 respectively. In the forward prediction case, the 

optimum values for 
0  are 0.9, 0.75 and 0.8 fo r p = 2, p = 5 

and p = 10 respectively. These parameters are the same for 

DCD-KAPA for sufficient number of updates. 

Fig. 4: Mean MSE of KAPA for the last 500 iterations for different 0  values 

in three cases: p = 2, p = 5 and p = 10; a) nonlinear system identification case; 
b) forward prediction case 
 



V. CONCLUSIONS 

In this paper, an efficient implementation of KAPA using 

dichotomous coordinate descent iterations is proposed. The 

suitable number of DCD updates was investigated for system 

identification and forward predict ion situations. The influence 

of the coherence parameter has been studied too. It is shown 

that the proposed DCD-KAPA implementation can achieve an 

important complexity reduction over KAPA.  
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