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Abstract—Many fast affine projection (FAP) algorithms have 

been proposed in the last two decades. These algorithms offer a 
good tradeoff between convergence rate and computational 

complexity. Most of the existing FAP algorithms use a constant 

projection order. Recently, the evolutionary APA (E-APA) with a 

variable projection order has been proposed. In this paper, an 

efficient implementation of the E-APA based on dichotomous 
coordinate descent (DCD) method is proposed and investigated. 

It is shown that the proposed algorithm obtains both fast 

convergence speed and small steady-state error. 

 

I. INTRODUCTION 

In echo cancellation systems, an adaptive filter algorithm is  

used to reduce the echo. The well-known normalized least-

mean-square (NLMS) algorithm has been widely used in this 

context. Nevertheless, it converges slowly for acoustic echo 

cancellation (AEC) applicat ions, where long length adaptive 

filters are used in order to model the acoustic echo paths. The 

affine projection algorithm (APA) [1] can be considered as a 

generalization of the NLMS algorithm that provides an 

improved convergence speed, especially  for high-correlated 

signals, like speech. The NLMS algorithm corresponds to an 

APA with a projection matrix of rank equal to L – 1, where L 

is the length of the adaptive filter. In terms of convergence 

rate, the APA has a performance that rivals with the more 

complex recursive least-squares (RLS) algorithm in many 

situations. There are some fast and stable RLS versions 

suitable for AEC (e.g., the error feedback least-squares lattice 

proposed in [2]) that behave well numerically even in finite 

precision and have a computational cost that increases linearly  

with the order of the filter. However, their numerical 

complexity is still several t imes higher than that of the affine 

projection-type algorithms for typical project ion orders [3].   

 Many fast affine projection (FAP) algorithms have been 

proposed for AEC systems (e.g., based on embedded fast RLS 

algorithm [4], Gauss-Seidel iterations [5], etc). They use some 

approximation that leads to inferior performance when using 

small step sizes. Efficient alternatives that have less 

multip licat ions use the dichotomous coordinate descent (DCD)  

method proposed in [6] and [7]. A ll previously mentioned 

FAP versions use a fixed project ion order. It is known that if 

the projection order increases, the convergence speed is faster, 

but the steady-state error also increases. A variable projection 

order might lead  to a lower steady-state error. In [8], an affine 

projection algorithm with an evolv ing order, called  

evolutionary APA (E-APA) was proposed. Based on findings 

from [9] and [10], the projection order was modified  

depending on the relationship between the output error and a 

threshold. However, the authors do not investigate practical 

implementations with reduced numerical complexity.  

The outline of the paper is as follows. The proposed 

evolutionary APA based on DCD iterations (DCD-E-APA) is 

described in Section II. In Section III, the behaviour of this 

algorithm for AEC systems is examined and compared with 

those of the algorithms using a fixed  project ion order. Sect ion 

IV concludes this work.  
 

II. DCD-E-APA  

In AEC configuration (Fig. 1), the far-end signal, nx , goes 

through the echo path h, providing the echo signal, ny . This 

signal is added with the near-end signal, n , (which can 

contain both the background noise and the near-end speech), 

resulting the microphone signal, nd . The adaptive filter, 

defined by the vector ˆ
nh , aims to produce at its output an 

estimate of the echo, ˆny , while the error signal, ne , should 

contain an estimate of the near-end signal.  

 

Fig. 1. AEC configuration. 



Through this paper, the following notation will be used: 

nK  is the projection order of the E-APA at iteration n, maxK  

is the maximum projection order, δ is a  regularization 

parameter, μ  is the step-size, nI  denotes the n nK K identity 

matrix, at time instant n, 1 1 ... 
n

T

n n n n Kd d d  
 
 

d is the 

desired vector, 1 1ˆ ˆ ˆ ... 
n

T

n n n n Ky y y  
 
 

y  is the filter 

output vector, superscript T denotes transposition, 

 1 1, ,...,  
T

n n n n Lx x x  x  is the input signal vector. Also, 

we have the data matrix 1 1 ... 
n

T

n n n n K  
 
 

X x x x , nR  is 

the n nK K  auto-correlation matrix of the input signal, i.e., 

n

T
n n n K R X X I , 0, 1,

ˆ ˆˆ ,...,
T

n n L nh h 
 
 

h is the adaptive 

filter coefficients vector, 
max1 1, ,...,  

T

n n n n Kx x x  
 
 

ξ  is a  

max 1K   vector. Also, nr  is a max 1K   autocorrelation 

vector, np  is a 1nK   solution vector, and finally, ne  is a  

1nK   vector.  

The computation of the matrix nR  can be made in  an  
efficient way taking into account its symmetry. However, the 

size o f this square matrix varies depending on the chosen 

projection order. There are two possible situations. In the first 
situation, if the projection order at time n is smaller than or 

equal to the project ion order at time n – 1, the matrix nR  is  

updated by replacing the first row and column with the 
elements of nr , while the bottom-right    1 1n nK K    

sub-matrix is replaced with the top-left    1 1n nK K    

sub-matrix o f 1nR . Th is updating rule is common to the 
APA or its fast versions for fixed projection orders [3-5]. In  

the second situation, if 1n nK K  , the matrix nR  is updated 

by replacing the first row and column with the elements of 

nr , while the other elements are replaced with 1nR . The 

update of nr  is made on full max 1K   vector, although only 

1nK   vector is needed for updating nR . The complexity of  
updating nR  is reduced to only 2 nK  mult iplications. The 

equations that define the proposed DCD-E-APA are 

summarized in the following table. The noise variance, σv
2
, 

can be estimated online as in [10], [11], or during the periods 

of silence.  

DCD-E-APA EQUATIONS 

Initialization: 

   

max max

0 1 0 1 0 max

2 2
1 2

0 1 0 1

ˆ,  ,  ,

/ 2 , 2 / 2

, ,

 

L L

v v

K K

K K

C C   

 

 

  

   

 

x 0 h 0

r 0 ξ 0

 

(1) 

For time index n = 1, 2, …  

1  n n n n n L n Lx x    r r ξ ξ  (2) 

1
ˆT

n n ny X h  
(3) 

n n n e d y  (4) 

1 1 2n nC K C    (5) 

1n n C    (6) 

 IF 2
n ne   

 

      
 1 maxmin 1,n nK K K 

 
(7) 

 ELSE IF 2
n ne    

 

       1max 1,1n nK K    (8) 

 ELSE  

      1n nK K 
 

(9) 

 END  

update nR using nr  (10) 

Solve n n nR p e  using DCD (11) 

1
ˆ ˆ

n n n n  h h X p  
(12) 

  

 

The DCD algorithm updates a solution of a linear system of 

equations in d irections of Euclidian  coordinates in the cyclic 

order and with a step size   that takes one of bM  (number 

of bits) predefined values corresponding to a binary  

representation bounded by an interval  HH  ,  [6], [7]. The 

algorithm starts the iterative search from the most significant 

bits of the solution and continues until the least significant bits 

were updated. The algorithm complexity is  limited by  uN , 

the maximum number of “successful” iterations [7]. The DCD 

method is implemented only with additions and bit shifts, and 

does not require multip lications. More details about the DCD 

algorithm can  be found in [6] and [7]. In our implementations, 

for specific algorithm iteration where the chosen projection 

order is nK , the DCD-E-APA has   max2 1 2 2nL K K    

multip licat ions, while APA has    3

max max2 3L K O K   

multip licat ions (the projection order is 
maxK ) [6] and E-APA 

with the presented matrix update procedure has 

   32 3 nnL K O K  . 

III. SIMULATIONS 

Simulations were performed in an AEC context as shown in 

Fig. 1. The NLMS, APA, E-APA, and DCD-E-APA were 

compared. The length of the adaptive filter is set to 512 

coefficients. The measured impulse response of the acoustic 

echo path is plotted in Fig. 2a (the sampling  rate is 8 kHz); its 

entire length has 1024 coefficients. This length is truncated to 

the first 512 coefficients for most of the experiments 

performed in  an exact  modeling case. Also, the entire length 

of the acoustic impulse response is used for one experiment 

performed in the under-modeling case. An independent white 

Gaussian noise signal is added to the echo s ignal, ny , with 30 

dB signal-to-noise ratio (SNR) for most of the experiments 

and 0.2  . 
 



 

Fig. 2. (a) Measured room acoustic impulse response; (b) far-end speech 
signal used in the experiments. 

 

The maximum considered value of the projection order for 

all simulations is max 8K  . In all the following experiments, 

in order to approach the context of typical AEC applications, 

the speech sequence from Fig. 2b is used as the far-end signal. 

The performance for the exact modeling scenario is evaluated 

in terms of the normalized misalignment (in dB), defined as 

10
ˆ20log /n

 
 

h h h , where   denotes the l2 norm and h 

is the true impulse response. Another measure used in this 

paper is the Echo Return Loss Enhancement (ERLE) typically  

used for AEC systems defined as  2 2
1010log /n nE d E e   

   
. 

The parameters of the DCD algorithm were 
102 ,  16,  8b uH M N   . They lead to a good compromise 

between performance and complexity (similar conclusions 

were obtained as in [6] and [7]).  

Fig. 3a shows the misalignment curves in case of a single-

talk scenario. In terms of the final misalignment, it can be 

seen that the variable pro jection order versions improve the 

overall performance of the fixed project ion order APA (where 

p denotes its projection order). A lso, it can be noticed the 

performance of DCD-E-APA is very close to that of E-APA. 

Both combine the fast convergence of the APA with a high 

projection order and the low misadjustment obtained with a 

low pro jection order. Init ially, in the first convergence phase, 

most of projection orders are chosen closer to the maximum 

allowed projection order, while in the steady state phase the 

projection orders are close to the minimum allowed project ion 

order. It can be noticed in Fig. 3b that most of projection 

orders are 1 (corresponds to NLMS) or 2. The ERLE 

performance of the considered algorithms is shown in Fig. 4 

and confirms the conclusions of the misalignment simulations 

and the superiority of the APA over the NLMS algorithm. A  

similar conclusion was obtained from all subsequent ERLE 

plots (not shown here).  

There are very s mall differences in the chosen projection 

orders between the E-APA and DCD-E-APA (Fig. 5). 

 

Fig. 3. a) Misalignment of NLMS, APA (p=8), E-APA, and DCD-E-APA. 

Single-talk case, L = 512, and SNR = 30dB; b) the number of occurrences of 
each projection order between 1 and 8 for DCD-E-APA. 

 

Fig. 4. The ERLE performance for the first  5 seconds of NLMS, APA (p=8), 
E-APA, and DCD-E-APA  (conditions of Fig.3). 

 

Fig. 5. The difference of the number of occurrences of each projection order 
between 1 and 8 of DCD-E-APA and E-APA (conditions of Fig.3). 



The highest difference is small (~400 << 336000 samples) 

for a project ion order equal to 8 and it exp lains some small 

differences seen in Fig. 3a. 

In Fig. 6, a sudden change in the echo path after 21 seconds 

is simulated. It can be noticed that both have better tracking 

performance than NLMS. Also, by comparing Fig. 6b with 

Fig. 3b, it can be noticed that the number of occurrences of 

small projection orders is reduced, and the number of 

occurrences of higher projection orders is increased.  

In Fig. 7 the under-modeling case is investigated. The part 

of the echo path that is not modeled leads to increased 

misadjustment (seen as an additional noise by the system). It  

can be noticed from Fig. 7b that the number of occurrences of 

higher project ion orders is much  higher than in previous 

investigated cases. As expected, the misalignment 

performance in the under-modeling case (Fig. 7a) is worse 

than that of the exact modelling case (Fig. 6a).    

 

 

Fig.6. a) Misalignment of NLMS, APA (p=8), E-APA, and DCD-E-APA. 
Single-talk case, echo path change after 21 seconds, L=512, and SNR=30 dB; 
b) the number of occurrences of each projection order between 1 and 8 for 
DCD-E-APA. 

Like for E-APA [8], the convergence performance of the 

proposed DCD-E-APA is not very sensitive to the noise 

estimation error. Fig. 8 shows the misalignment d ifference in  

dB between DCD-E-APA with exact noise estimat ion σv
2 

and 

DCD-E-APA using 0.5σv
2
 and 2σv

2 
respectively. It can be seen 

that the misalignment difference is smaller than 1 dB in  

absolute value. The same conclusion has been drawn in  all 

considered cases.   

The NLMS algorithm has around 1030 multip licat ions, 

while APA with p=8 has 8360 mult iplications. The average 

number of mult iplications of both E-APA and DCD-E-APA 

depends on the number of occurrences of each projection 

order. For the considered cases, for DCD-E-APA, it ranges 

from around 1940 for the case of Fig. 3 to around 3640 for the 

case investigated in Fig. 7. In most cases, the number of 

multip licat ions for the E-APA is slightly higher than those of 

DCD-E-APA. The complexity  reduction is quite significant, 

especially for high values of the maximum projection order.  

 

Fig. 7 a) Misalignment of NLMS, APA (p=8), E-APA, and DCD-E-APA. 
Single-talk case, under-modelling case, L = 512; b) the number of occurrences 
of each projection order between 1 and 8 for DCD-E-APA. 

 

Fig. 8 Misalignment difference in dB between DCD-E-APA with exact noise 
estimation σv

2
 and DCD-E-APA with 0.5 σv

2 
and 2 σv

2
respectively (conditions 

of Fig. 7). 

 

IV. CONCLUSIONS 

The DCD-E-APA has been proposed for AEC. The 

dichotomous coordinate descent method was used and an 

efficient update of the variab le size autocorrelation  matrix has 

been proposed. It is shown that it provides both faster 

convergence and smaller steady state error at much reduced 

complexity than the APA. Future work will be focused into a 

derivation of a variable pro jection order version of an exact  

evolutionary APA using the displacement structure theory [12]  

and a comparison of our proposed algorithm with another 

algorithm, such as the EF-LSL of [2]. 
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