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F.Albu and A.Mateescu
Univ.” Politehnica’ Romania
felix@pns.comm.pub.ro

Abstract This paper applies neural networks to the
adaptive channel equalization of a bipolar signal
passed through a dispersive channel in the presence
of additive noise. The paper describes two neural
networks which might be considered as adaptive
equalizers. The simulation results confirm that the
neural network equalizers offer a performance which
exceeds that of linear structures. More specifically,
this paper highlights the effects of delay order on
BER performance for nonlinear structures.

|. Introduction

In this paper we applies the application of nonlinear
gstructures  as adaptive channel  equalizers and
demonstrate the advantage which they offer over the
linear transversal equalizer (LTE) [1], especidly in a
highly noisy environment. Channel equalization is a
suboptimal technique employed to combat the effects of
intersymbol interference (ISI) and noise, which corrupt
the transmission of signals across a communication
channel (Fig. 1). The task of the egualizer is to
reconstruct the transmitted sequence with the minimum
probability of misclassification, i. e S(t) =s(t—d),
where d is the delay. The channel is usually modeled by
a FIR filter with the following transfer function:
n,-1
Z hz™, where h is the channel impulse
1=0
response and N, is his length. In Fig.1 the transmitted

symbol s(t) is taken from the set{ii ; it forms an

independent and identically distributed sequence, and
g(t) is an additive Gaussian noise with zero mean and

variance 0: :

H(z) =

It is well-known [1] that block detection equalization
based on the principle of Maximum Likelihood Sequence
Estimator (MLSE) will provide the best classification
performance when the channel is completely known. Its
implementation complexity is one of the main reasons for
using other symbol-decision class equalizers with ssimpler
implementation, but with poorer performance. If we
consider the equalization problem as a geometric
classification problem [2] we remark that the optimal
decision boundary is sometimes nonlinear. This points us
to one of the shortcomings of the LTE which necessarily
forms decision boundaries which are hyperplanar and
therefore leads to a significantly poorer bit-error rate
(BER) in highly noisy environment. In this case we are
led to a problem of noise enhancement so that if we
increase the order of the LTE, the final power of the
noise increases and this tends to diminish any advantage
gained by increasing the LTE order. We can overcome
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these difficulties by utilizing neural networks as channel
equalizers.

I1. Nonlinear architectures

In this section we give a brief description of the
architecture and capabilities of the multilayer perceptron
(MLP) and the radial basis function (RBF) networks in
equalization problem, confirming the results of Chang
and Mulgrew [1,2].

In the MLP the neurons are arranged in layers as
depicted in Fig.2 (a network with only one hidden layer).
We shall describe the architecture of a perceptron by a

sequence of integers Ny, N,...N, where Nyis the

dimension of the input of the network, and the number of
nodes in each layer, ordered from input to output, are

Ny Ny

RBF is a two-layer network comprising a hidden layer
and an output layer (Fig. 3), and it has been shown to be
capable of universal approximation as is the case for the
MLP network [4]. The hidden layer contains n neurons,
which calculate the Euclidean distance between a vector
center [ and an input vector

_ t
y—[y(t) y(t-1 ... y(t—m+1)] . The result is
passed through a nonlinear function to generate the
hidden node output, @®;, normaly chosen to be

o Hlv-el'd
Gaussian functions ®; = eXpE_F—ZE , Where

I, is called the width.

The output layer is computed by a weighted linear

combination of the n neurons of the hidden layer. The
n

D> W,
1=1

wherew; are the weights. It has been shown [2] that RBF
realizes an implementation of the optimal Bayesian
equalizer if the parameters of the network are well
chosen (i. e., the number of hidden neurons n is equal to

the number of desired channel states; n=2"™""", the
RBF centers are placed at desired channel states:

¢ =[V,(1) ¥, (t-1)...y, (t -m+D)]'and &l the
widths are twice as large as noise variance). In our work,
the training of RBF was done using a two-step approach:

in the first step a supervised clustering procedure [2] was
used to optimize the location of the centers and all the

overal response is a mapping: f (y) =



widths were set at I, =T =—== where d, is the
~2[h

maximum distance between the chosen centers. In the
second step, the second layer weights were trained using
the least mean squares (LM S) algorithm.

[11. Simulation Study

In the following simulation, the decision delay was fixed
to 1. Simulations were conducted in order to illustrate the
difference in performance between linear and nonlinear
equalizers.

The channel used in our simulations is a discrete
microwave channel modeled as a FIR filter, where only
three components are selected in relation to a maximum
peak distortion criterion. Its transfer function is:

H,(z) = -0.0875+0.7901z " - 0.5989z. This

discrete-time channel model is obtained by sampling the
analog two-ray propagation model, and generally, it hasa
non-minimum phase characteristic [5]. We used aroll-off
parameter equal to 0.3 in cosines-raised filter system and
a transmission rate equal to 24 Mbit/sec. Phase-offset is
not considered and the sampling optimum epoch is used
[5]. We designed a 6-14-10-1 MLP network with the
following parameters values and a 6-256-1 RBF network,
with inputs y(t), y(t-D1),...,y(t—=5). We have
chosen six inputs by analogy with the linear Wiener filter
where six has been shown to be the minimum number of
inputs necessary to obtain the best performance. The
number of hidden layers and neurons for the MLP has
been determined experimentally after severa tries.
Concerning the RBF, the number of hidden centers leads
to the architecture that realizes the bayesian equalizer
[6]. However, some techniques are possible to reduce the
complexity of nonlinear equalizers. One of them is the
Variable Selection using the Statistical Sensitivity
Anaysis (VSSSA)[3, 6]. This method alows the
selection of an appropriate input variable subset which
can reduce the complexity of the nonlinear structures
without significant degradation in equalization
performance, as was shown in [6].

For measuring the performance of our structures we used
BER, = log;oBER, for 100000 test samples. The BER of
the trained RBF network, the MLP network, the order-6
Wiener filter are plotted for comparison (Fig. 4). We can
see the superiority of nonlinear techniques, and we
observed an acceptable performance for 17 dB for
nonlinear structures. The results were better for RBF
structure than for MLP structure (Fig. 4).

[11.1 The effect of delay

In the following simulation we will impose different
delay orders for the RBFN structure. The equalizer order
was chosen to be 4. The following two channels,
showing the same magnitude but different phase
responses, were used:

H,(z) = 0.5429 - 0.1369z™* - 0.91257°
H,(z) = 0.9125+0.1369z* - 0.542972

Simulations were conducted using 2 values of signal-
noise ratio (SNR) with delay order d = 0,...,5 in order to
study the effects of delay order on BER, performance. In
each case, we trained a different RBF in order to
minimize the cost function E{ [ 5(t) - s(t-d)]%, where

E{+} is the statistical operator. In fact, the Bayesian
decision function depends also on delay order and there
is at least one minimum value of this function which can
be attained by different delay orders.

The results show that the optimum delay order which
results in the best BER performance is different for each
channel model even though these channels exhibit the
same magnitude response. For example, for SNR=16 dB,

the optimum delay for H,is 4, whileitis 2 for H, (Fig.

5). Experiments also show that for the same channel the
optimum delay may depend on the SNR. Note also that
for different SNR conditions, the performance of the
RBF equalizer can result in significantly different levels
of classification performance (Fig. 5). The experiments
showed that effects of the delay on the BER_
performance were the same for the MLP structure.

V. Conclusion and Per spectives

In this paper we confirm the results of previous authors
that is the MLP and RBF network can offer advantages
over linear structures in the design of adaptive
equalizers. However the selection of optimal parameters
for aMLP equalizer need further studies. We highlighted
the effects of delay order on BER, performance for
nonlinear structures. It is obvious that significant
improvement to the equalizer's performance can be
achieved over an equalizer which operates with a fixed
delay order if the optimum delay could be calculated. We
will focus on that in a future work.
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Fig. 1 Discrete-time model of a data transmission system.
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Fig. 2 Structure of multilayer perceptron (MLP)
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Fig. 3 Radial Basis Function Network (RBFN).

-1.5f Tm— -

-2.5
BER

—— RBFN
MLP
----------- W iener Filter
3.5
o , ) . | 1 1
" m 12 13 14 15 16 17

Signal to Noise Ratio (dB)



Fig. 4. Hy(z) BER, for RBF, MLP and Wiener Filter (The order of the Wiener filter equalizer was 6)
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Fig.5 BER_ versus Delay for two SNR values for H, e Hz channels.



