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AN EFFICIENT ALGORITHM FOR ACTIVE NOISE CONTROL 
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A multichannel filtered-x affine projection algorithm for active noise control (ANC) 
systems based on dichotomous coordinate descent (DCD) iterations is proposed. It is 
shown that it has better convergence properties, lower complexity, and improved 
robustness to inaccuracies of the plant model than other previously published 
algorithms for ANC systems. 

1. INTRODUCTION 

Active noise control (ANC) systems have been increasingly researched and 
developed [1]. The use of the modified filtered-x structure for ANC using finite 
impulse response (FIR) adaptive filtering [2] will be assumed in the rest of this 
paper (Fig. 1).  

The multichannel versions of the filtered-x least-mean-square (FX-LMS) and 
the modified FX-LMS (MFX-LMS) algorithms are the benchmarks to which most 
adaptive filtering algorithms are compared, because they are widely used [1, 2]. In 
the field of adaptive filtering it is well known that fast affine projection (FAP) 
algorithms for ANC provide a good tradeoff between convergence speed and 
computational complexity [3–9, 11, 14]. It was also reported that in realistic cases 
where noisy plant models are used, FAP algorithms can be much more robust to 
plant model noise than more complex algorithms based on recursive least-squares, 
and they can achieve a better convergence performance at a lower cost [4, 6]. In 
[6], an efficient implementation based on Gauss-Seidel method has been proposed 
and adapted for nonlinear ANC using Volterra filtering in [15]. Also, a similar 
approach with that of [6] has been adapted for filtered-X structures in [7–9]. The 
numerical complexity of previously published affine projection (AP) algorithms for 
                              
1 Faculty of Electronics, Telecommunications and Information Theory / Telecommunications 
Department, University “Politehnica” of Bucharest, 1-3 Iuliu Maniu, ZIP 061071, Bucharest, 
Romania, E-mail: {felix, pale}@comm.pub.ro 
2 Electronics Department, University of York, Heslington, York YO10 5DD, U.K. Tel: +44 (0) 1904 
432396, E-mail: yz1@ohm.york.ac.uk 



2 An efficient algorithm for active noise control 417 
 

 

ANC systems was further reduced by using the Dichotomous Coordinate Descent 
(DCD) method proposed in [10].    
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Fig. 1 – A delay compensated or modified filtered-x structure for active noise control [2, 4]. 

An even simpler version based on approximation of the affine projection, called the 
Modified Filtered-x Dichotomous Coordinate Descent Pseudo Affine Projection 
(MFX-DCDPAP) algorithm, has been investigated in [11]. In [12] a novel 
recursive filtering technique and filtering update that is incorporated in DCD 
iterations is proposed for the AP algorithm. This leads to an important reduction in 
the number of multiplications needed by the AP algorithm.  

In Section 2, a multichannel ANC system called the Modified Filtered-x 
Dichotomous Coordinate Descent Recursive Affine Projection (MFX-DCDRAP) 
algorithm is presented. It uses a variant of the DCD algorithm called the DCD 
algorithm with a leading element [13]. The computational complexity of the 
proposed algorithm is evaluated and compared with other algorithms in Section 3. 
Simulation results comparing the investigated algorithm with previously published 
MFX-LMS and MFX-DCDPAP algorithms are presented in Section 4. Section 5 
concludes this work. 

2. MFX-DCDRAP ALGORITHM 

In order to describe the algorithm most of the notations and definitions from 
[14] are used. The variable n refers to the discrete time, I is the number of reference 
sensors, J represents the number of actuators, K is the number of error sensors, L is 
the length of the adaptive FIR filters, M is the length of the FIR filters modeling the 

plant, and N is the projection order. The vectors ( ) ( ) T
,..., 1i i ix n x n L=  − +  x  and 
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( ) ( ) T' ,..., 1i i ix n x n M=  − +  x consist of the last L and M samples of the reference 

signal ( )nxi , respectively.  Superscript “T” denotes transposition. The vector 

( ) ( ) T
,..., 1j j jy n y n M = − + y  consists of the last M samples of the actuator 

signal ( )ny j . The samples of the filtered reference signal ( )nkji ,,ν  are collected in 

a KIJ × matrix ( )
( ) ( )

( ) ( )
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( ) ( ) ( )T T
1 0 0[ ,..., 1 ] n n n L= − +V V V , and KNIJL×  matrix 

[ ])1()()( 11 +−= Nnnn VVV L .  The vectors ( ) ( ) ( ) ( )[ ]ndndndn K
ˆ,...,ˆ,ˆˆ 21=d  and 

( ) ( ) ( ) ( )[ ]nenenen Kˆ,...,ˆ,ˆˆ 21=e  consist of estimates ( )ndk
ˆ  of the primary sound field 

( )ndk  and alternative error signals samples ( )nekˆ , both computed in delay-
compensated modified filtered-x structures (Fig. 1). Vectors 
( ) ( ) ( ) ( ) ] 1ˆ,...,1ˆ,ˆ[ ˆ +−−= Nnnnn dddD  and ( ) ( ) ( ) ( )[ ]1ˆ,...,1ˆ,ˆˆ +−−= Nnnnn eeeE  have 

both KN×1  size [14]. The vectors 
T

, , ,1 , ,,...,j k j k j k Mh h =  h consist of taps mkjh ,,  of 

the fixed FIR filter modelling the plant between the signals ( )ny j  and ( )nek .  A 

1×IJL  vector ( ) ( ) ( ) ( ) ( )  ]]...]...[...[[ ,,,1,11,,1,1,1 nwnwnwnwn LJILJI=w  consists of taps 

of all the adaptive FIR filters linking the signals ( )nxi  and ( )ny j . )(nR is a 

KNKN ×  auto-correlation matrix , ( )nP  and ( )nZ  are  1×KN  sized initially null 
vectors,  I is a KNKN ×   identity matrix , δ  is a regularization factor, and  µ  is a 
normalized convergence gain. ( )nY  is a 1×KN  sized initial null vector and 

( )nY is a vector that keeps the upper ( ) 11 ×−NK  elements of ( )nY . 
In the context of ANC systems, a multichannel feedforward system using an 

adaptive FIR filter with a modified filtered-x structure and with filter weights adapted 
with a classical AP algorithm can be described by the following equations [4]: 

 ( ) ( ) ( )T
,

1

I

j i j i
i

y n n n
=

=∑w x , (1) 

 ( ) ( )T '
, , ,i j k j k in n=ν h x , (2) 
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 ( ) ( ) ( )T
,

1

ˆ
J

k k j k j
j

d n e n n
=

= −∑h y  (3) 

 ( ) ( ) ( ) ( )T T Tˆ ˆn n n n= +E D V w  (4) 

 ( ) ( ) ( ) ( ) ( )( ) ( )1T Tˆ1n n n n n n
−

+ = −µ + δw w V V V I E . (5) 

Using the original DCD-AP algorithm from [12] and extending the fast recursive 
techniques and filtering update to multichannel ANC systems as in [4], the 
multichannel MFX-DCDRAP algorithm for ANC is obtained.  

 ( ) ( ) ( ) ( )T
0[ 1  1 ]n n n n= − −Z V w Y , (6) 

 ( ) ( ) ( )T 1n n n= −G V V , (7) 

 ( ) ( ) ( ) ( )1−−= nnnn PGZY , (8) 

 ( ) ( ) ( )T Tˆ ˆn n n= +E D Y , (9) 

where ( )nG  is a KNKN × matrix. The filter update (5) is performed by solving the 
following linear system of equations [14]: 

 ( )( ) ( ) ( )Tˆn n n+ δ ⋅ =R I P E , (10) 

using the DCD method with a leading element (Table 1), where )()( npR  denotes 
the pth column of  the matrix ( )nR . 

The only values of ( )nR  that require calculations are the upper left KK ×  
elements given by ( ) ( )T

0 0n nV V . The other elements of ( )nR  can be taken from 
( )1−nR  and ( )nG . Specifically, elements ( )[ ] KNKjin ji ,...,1, ,, +=R  are taken 

from ( )[ ] ( )1,...,1, ,1 , −=− NKjin jiR . The elements 

( )[ ] KNKjKin ji ,...,1,,...,1 ,, +==R  and ( )[ ] KjKNKin ji ,...,1,,...,1 ,, =+=R  are 

taken from ( )[ ] KNKjKin ji ,...,1,,...,1 ,, +==G . The MFX-DCDRAP algorithm is 

described by the equations (1)–(3), (6)–(10). The MFX-DCDPAP algorithm uses 
the original DCD algorithm [10], while the MFX-DCDRAP uses a DCD version 
with a leading element [13]. The original DCD algorithm updates a solution of a 
linear system of equations in directions of Euclidian coordinates in the cyclic order 
and with a step size α  that takes one of bM  (number of bits) predefined values 
corresponding to a binary representation [10] bounded by an interval [ ]HH ,− , 
[12]. 



420 Felix Albu, Constantin Palelogu, Yuriy Zacharov 5 
 

 

Table 1 

DCD algorithm with ‘leading’ element and incorporated filter update 

Initialization: ( ) ( ) 1 ,2/ ,ˆ , ==== mHnn αµEr0P  
For uNk ,...,1=  
 { }iKNi rp 1,...,0max arg −==  

              while ( ) ( )[ ] bppp Mmnr ≤≤ &2/ ,Rα  
                       2/ ,1 αα =+= mm  
           if bMm > , go to Eq. (1) 
                    ( )αppp rsign+= PP  

                        ( ) ( )( )p
p nr Rrr αsign−=  

            ( ) ( ) ( ) ( ) )(sign1 pT
p nrnn Vww α−=+  

 
The algorithm starts the iterative search from the most significant bits of the 

solution and continues until the least significant bits were updated. The algorithm 
complexity is limited by uN , the maximum number of “successful” iterations. We 
are interested in using a smaller number of updates and a more efficient DCD 
version from this point of view was proposed in [13]. This new version finds a 
‘leading’ (pth) element of the solution to be updated (Table 1).  With uN  updates, 
the number of additions of this version is upper limited by bu MNN +2 , while the 
complexity of the original DCD version is upper limited by 
( ) 112 ++−+ bbu MMNN  additions. For 16=bM  (which is a typical number of 

bits used for representation of filter taps) and 32<uN , the maximum number of 
additions in the DCD algorithm with a leading element is less than that in the 
original DCD version. It can be seen from Table 1 that the filtering update is 
incorporated in the DCD procedure, thus resulting in reduction of the number of 
multiplications per iterations compared to the previous MFX-DCDAP or MFX-
DCDPAP algorithm. 

3. COMPUTATIONAL COMPLEXITY 

The number of multiplications per algorithm iteration for the MFX-DCDRAP 
algorithm is: 
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 ( ) ( )122 +++++++=− KNKNJKMIJLKKNLMIJKM DCDRAPMFX . (11) 

The number of multiplications per algorithm iteration for the MFX-LMS 
algorithm is [4]: 

 ( ) KJKMIJLLMIJKM LMSMFX ++++=− 2 . (12) 

The number of multiplications per algorithm iteration for the MFX-DCDPAP 
algorithm is [11]: 

 ( ) JKMIJLKNLMIJKM DCDPAPMFX ++++=− 32 . (13) 

The upper number of additions per algorithm iteration for the MFX-
DCDRAP algorithm is: 

 
( )( )

( ) ( )( ) ( )

2 22 1 1

1 1 1  1 2 .
MFX DCDRAP

u b

A K IJ N N N

K IJ M L J M N IJ L N KN M
− = + + − − +

+ + − + − + + + − + +
 (14) 

The number of additions per algorithm iteration for the MFX-LMS algorithm is: 

 ( ) ( ) ( )112 −+−−++=− MJKKLIJLMIJKA LMSMFX . (15) 

The upper number of additions per algorithm iteration for the MFX-DCDPAP 
algorithm is 

 
( ) ( )
( )2

2 3 2 1

2 1 1.
MFX DCDPAP

u b b

A IJK M L KN IJL JK M

IJ K N KN N M M
− = + + − + + − −

− − + + − + +
 (16) 

Figure 2a shows the number of multiplications for the MFX-LMS algorithm 
and the DCD based algorithms when 150 ,64 ,2 ,3 ,1 ===== LMKJI , and N is 
varying; it can be seen that the MFX-DCDRAP algorithm is less complex than the 
MFX-LMS algorithm for 12≤N  and less complex than the MFX-DCDPAP 
algorithm for 16≤N .   

Usually we have },,,{ NKJIL >> in practical implementations and therefore, 
in terms of multiplications, the MFX-DCDRAP algorithm is less complex than the 
MFX-DCDPAP algorithm. 

Figure 2b shows the number of additions per algorithm iteration for the 
MFX-LMS, MFX-DCDRAP, and MFX-DCDPAP algorithms in the same situation  
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Fig. 2 – Numerical complexity of the MFX-LMS, MFX-DCDRAP and MFX-DCDPAP algorithms 
( 16,4,64,150,2,3,1 ======= bMuNMLKJI , and N is varying); a) number  

of multiplications per algorithm iteration; b) number of additions per algorithm iteration. 

Table 2 

Comparison of the number of multiplies and additions per iteration of the MFX-LMS, MFX-
DCDRAP and MFX-DCDPAP algorithms for ANC ( 4,64,150 === uNML , 2,3,1 === KJI ) 

Algorithm for multichannel 
ANC Multiplies per iteration Additions per iteration 

MFX-LMS 3018 3003 
MFX-DCDPAP (N=5) 3198 3524 

MFX-DCDRAP (N=13) 3156 3311 
MFX-DCDRAP (N=5) 2372 2431 

as above. The MFX-DCDRAP algorithm requires fewer additions per iteration than 
the MFX-LMS algorithm for 10≤N . 

Note that the number of additions of the DCD part in the MFX-DCDRAP 
algorithm represents only a small fraction of the total number of additions (about 
4% for 5=N ). 

However, this fraction is several times higher for the MFX-DCDPAP 
algorithm (about 12% for 5=N ). This fraction increases with increasing N (e.g., 
for 13=N , the ratio is only about 7% for the MFX-DCDRAP algorithm and more 
than 27% for the MFX-DCDPAP algorithm). 

4. SIMULATION RESULTS 

The MFX-DCDRAP algorithm and the previously published MFX-DCDPAP 
algorithm were simulated and compared to the MFX-LMS algorithm [4]. The 
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simulation was performed with acoustic transfer functions experimentally 
measured in a duct. The impulse responses used for the multichannel acoustic plant 
had M = 64 taps each, while the adaptive filters had 150=L  taps each. The 
reference signal was a white noise with zero mean and variance one. For all the 
affine projection algorithms, the step size is 1µ =  in the case of ideal plants. In 
case of noisy plant models with a signal to noise ratio (SNR) of 10 dB 0.5µ =  was 
used for improved stability and robustness [14]. The regularization factor is 

32 10δ = ⋅  for the ideal plant and 410δ =  for plant models with the SNR of 10 dB. 
As known from [4], higher regularization values could lead to a reduced initial 
convergence speed. The step size µ  for the MFX-LMS algorithm was 5102 −⋅ [4], 
[11]. The parameter H of the DCD algorithm is related to the bounds of the 
solution of the linear system [12] and it was set to 1/128. The choice of the 
parameters of the algorithms was made by trials in order to obtain the best 
performance. The performance of the algorithms was measured by 

 ( )
( )

( )

2

10 2

[ ]
Attenuation dB 10 log

[ ] 

k
k

k
k

E e n

E d n
= ⋅

∑
∑

 (17) 

and have been averaged over 50 simulations. It was found in previous works that a 
projection order of size 5=N  is sufficient for AP algorithms to achieve a 
significantly improved convergence performance compared to the LMS algorithm 
and therefore this value is used as a base for comparing the considered DCD based 
algorithms [11]. 

Figure 3a compares the performance of the selected algorithms, with ideal 
plant models, for a multichannel system (I = 1, J = 3, K = 2), obtained from 
Matlab™ simulations. As expected, both DCD based algorithms have higher 
convergence performances than the MFX-LMS algorithm. For the projection order 

5=N  and 16=bM , even one DCD iteration in the MFX-DCDRAP algorithm 
leads to a superior convergence performance over the MFX-LMS algorithm. As 
expected the convergence speed increases if the number of iterations is increased 
(e.g., from 1 to 4 in Fig. 3a). 

If ideal plants are used, the MFX-DCDPAP algorithm achieves superior 
performance over the MFX-DCDRAP algorithm in terms of convergence speed, if 
the same bM , uN , and H  parameters are used. However, for similar number of 
multiplications, the MFX-DCDRAP algorithm can use a higher projection order 
(e.g., up to 13 instead of 5 for the investigated I, J, K, L, M values – see numerical 
complexities in Table 2). It can be seen that the MFX-DCDRAP algorithm with 

13=N  has a faster convergence speed than the MFX-DCDPAP algorithm using 
5=N . 
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Fig. 3 – Convergence curves for multichannel delay-compensated modified filtered-x algorithms  
for ANC with ideal plant models ( 16,64,150,2,3,1 ====== bMMLKJI );  

a) ideal plant models; b) noisy plant models (10 dB SNR). 

Figure 3b shows the performance when plant models with a 10 dB SNR are 
used. The noisy plant models with 10 dB SNR accuracy were obtained as in [4]. In 
this case, the behavior of the MFX-DCDRAP algorithm is better than that of the 
MFX-DCDPAP algorithm with similar DCD parameters and much better than that 
of the MFX-LMS algorithm. Therefore, the MFX-DCDRAP algorithm is 
potentially more robust to inaccuracies of the plant model. 

5. CONCLUSIONS 

The multichannel MFX-DCDRAP algorithm has been introduced for 
practical ANC systems using FIR adaptive filtering. It has been shown to provide a 
significant improvement of the convergence speed over the MFX-LMS algorithm, 
with a smaller computational complexity for typical projection orders. Its 
performance was also compared favourably with the previously published MFX-
DCDPAP algorithm. It was shown that it is a good candidate for practical real-time 
implementation due to its fast convergence, low complexity, and robustness to 
plant model inaccuracies. 
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