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Abstract A powerful learning method for RBF networks is clustering and least squares learning [1,2]. The RBF
centers are obtained by means of a k-means clustering algorithm while the network weights are learnt using the
LMS algorithm. The k-means algorithm is an unsupervised learning method based only on input training
samples. It partitions the input data set into n cluster centers. The traditional k-means clustering algorithm can
only achieve a local optimal solution, which depends on the initial locations of cluster centers. A consequence of
this local optimality is that some initial centers can become stuck in regions of the input domain with few or no
input patterns, and never move to where they are needed. An improved k-means clustering algorithm has been
proposed [2], which overcomes the above-mentioned drawback. By using a cluster variation-weighted measure,
the enhanced k-means partitioning process always converges to an optimal or near-optimal configuration,
independent of the initial center locations [3].

Introduction

The algorithm for training a RBF network is a combination of the following three
methods: 1) using a k-means clustering algorithm to find the proper function centers; 2) using
a p-nearest neighbor heuristic rule to determine the width of basis functions; and 3) using the
least-mean-square error to learn the weights between the hidden layer and output layer [4]. In
order to obtain a neural network solution to a given problem, it is essential to define the proper
network architecture. In the case of RBF network models, the network architecture is
determined by the number of nodes in each layer and the location of the function centers.
However, the determination of the proper number of hidden layer nodes and the location of the
function centers require various techniques for different problems. Especially, when using
large training data sets, the selection of the number of hidden layer nodes and the location of
centers will have profound effects on the performance of the RBF network solution. The most
natural choice is to let the number of nodes in the hidden layer equals to the number of
training samples; and locate a hidden node for each training data point. This choice of function
centers leads to the most basic form of RBF networks. The advantages of this solution are: 1)
it is simple; 2) the choice of function centers is uniquely determined; 3) it fully utilizes each
training sample; and 4) it is highly desirable in the case of high input dimension and sparse
training data. However, there are also many problems associated to this simple solution. For
example, computation costs, ill-condition problem, over-fitting problem.

In order to overcome the various problems associated with the basic form of RBF
networks, a number of methods have been used select the location of function centers. A
number of methods to deal with the problems are discussed in the following sections.

I. The k-means clustering algorithm

Instead of placing the function centers on each of the training data points or on a randomly
selected subset of the data points, a more commonly used method is to use the k-means
clustering algorithm to find the function centers.

In general, clustering algorithms are used to group some given objects defined by a set of
numerical properties in such a way that the objects within a group are more similar than the



objects in different groups. Therefore, a particular clustering algorithm needs to be given a
criterion to measure the similarity of objects, how to cluster the objects into groups. The k-
means clustering algorithm uses the Euclidean distance to measure the similarities between
objects. K-means clustering algorithms need to assume that the number of groups (clusters) is
known a priori knowledge.

The standard k-means clustering is a general clustering algorithm to cluster N objects
into m groups of given number m. The method minimizes the total squared Euclidean distance
E of the form:
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where  xi ; i=1, 2, … N are the N objects and   cj ; j=1, 2, … m  are the m centers. Mij is the
cluster membership function which is defined by a N×m matrix of 0's and 1's with exactly one
1 per row which identifies the groups to which a given object belongs. In this algorithm, the
similarity between objects is defined by the Euclidean distance: the smaller the distance
between two objects represents that the two objects are more similar. A version of k-means
algorithm which can be used to select the function centers for RBF networks is presented in
the following lines:

Step 1. Initialise the function centers
Set the initial function centers to the first m training data or to the m randomly
chosen training data.

Step 2. Group all patterns with the closet function center

For each pattern xi, assign xi to group j*, where jiji cxcx
j
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Step 3. Compute the sample mean for the function center
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where mj is the number of patterns in group j.

Step 4. Repeat by going to step 2, until no change in cluster assignments

The traditional k-means clustering algorithm can only achieve a local optimal solution, which
depends on the initial locations of cluster centres (Fig. 1). Some initial centres can become
stuck in regions of the input domain with few or no input patterns, and never move to where
they are needed. An improved k-means clustering algorithm has been proposed [2], which
overcomes the above-mentioned drawback. The RBF centres are learnt using the improved k-
means clustering method [2]
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and iv is the variation of the ith cluster. To estimate variation iv , the following updating

rule is used:
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The initial variations iv (0), ni ≤≤1 , are set to the same small number, and α is a constant

slightly less than 1.  The learning rate for centers is:
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The widths nii ≤≤1,2σ can be calculated, after the clustering process has converged, from the

variances of the clusters. Because the optimal k-means clustering distributes the total variation
equally among the clusters, a universal width can be used for all the nodes. The network
weights niwi ≤≤1, are learnt using the LMS algorithm.

For the purpose of graphical display, the equalizer order is chosen 2. Let the channel transfer
function be

1
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In Fig. 1 are plotted the desired states, 1000 samples which form the data clusters and the RBF
centers founded after using the enhanced k-means clustering algorithm. The SNR was 10 dB.
This algorithm ensures a near-optimal center configuration.

Fig.1 Data clusters, *-desired states, o-RBF centers using the enhanced k-means clustering
method, + -RBF centers using k-means algorithm



Simulations were conducted to illustrate the difference in performance between the

clustering algorithms proposed for channel equalization [4-6]. We used 100 000 test samples

for measuring BER performance.

The channel used for various SNR’s was: H z z z2
1 20 3482 0 8704 0 3482( ) . . .= + ⋅ + ⋅− − .

We used a 4-64-1 RBF network, and the delay was 1. Because of the superiority of enhanced
k-means algorithm in finding the location of desired centers (Fig. 1) a RBF network using this
clustering method obtains better performances (Fig. 2).

Fig.2 Comparison of performance for H2

Conclusions

An enhanced clustering algorithm has been applied to channel equalization using
Gaussian RBF networks. The improved k-means clustering algorithm ensures that a near-
optimal center configuration can be achieved.
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