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Absmact—-In this paper. new algorithms robust to 2 mis of
Gaussian and mmpulsive noises that approximate an usknown
sparse impulse response of an LTT system ave propased. They are
wsing the sigmoid cost function and based onm the Least-Mean
Mixed-Norm (LMMN) adaptive algorithm. It & shown by
simulations that the proposed sigmeid LMMN (SLMMN)
algorithins  thar exploit sparsity-enforcing penalties achieve
superior performance to other competing algovithms in the
sparse system identification comtext.
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L INTRODUCTION

There are munerous applications of the adaptive filters [1]-
[3]. One of the most popular algorithms wsed for system
ideanfication s the least mean square (LMS) algorithm [4]
due 10 its computational sumplicity. In [5]. the least mean
fourth (LMF) algonthm based on fourt-order power
optinization criterion \was firv ved To overcome the
sensitivity issises of LMS and IMF. the least-mean mixed-
norm (LMMN) algerithm which 5 a linear combination of
LMS and LMF is proposed in [6]. However, the performance
of LMMN algonthm degrades senously dne to mpulsive
wterferences which exist m pracical environments [7]-[9].
Typecal mpulsive notses are the following notses: computer
keyboard clicks. switchmg nowse. audio recordings dropouts
[10].

Adaphive algorithins based on lower-order normm (/p-noem)
[}, [11] and lbe fanuly of sign algonthums (SAs) [12], [13]
have become popular to their stmplicity and robustness
agamst impulsive noise. The least mean p-power (LMP)
algocthun munimzing the Lenorm of the error signal has been
successfully employed for system identification  under
uptlsave noise disturbances [14]. [15]. In [16). robust mixed-
norm (RMN) algorithim is also developed, However, thm
algonithms  suffer from slow comvergence mate.
algorithms robust to such noises are proposed in [17]. &“L
Recent studies focus on the nonlmear sigmoid function w
can be used in the wadmonal cost function of the adaptive
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filtering algonthms 1o mnprove the robusmess to mpulsive
noise [19]4{21].
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Fig. 1. System wentificahon model

In this paper. we propose & modified LIMMN algonthun
based on the sigmod cost function. This new algorsthan &
called Sigmoid LMMN (SLMMN) which can improve the
estimation performance upder impelsive nose

Usually, the mmpulse response of many systems
encounstered m practice exlubit sparse structure. t.c.. they have
very few non-zero taps among many mactive ones [22]. The
reweighted least-mean mixed-norm  algorithn  has  been
ncendv proposed for sparse channel estimation  under

AN nomve ass ion [23],  In [24]. sparse LMP
algomhms are wphed for robust estunaton of sparse
channels. Unfortunately, the proposed SLMMN algonthm
unuotunhzed)enptmspnmsmwnweofdtsyslem
Hence, two sparsity aware algorithms namely, Zero Attracting
(ZA)SIMMN and Reweiglted Zero Amacting (RZA)-
SLMMN are proposed to exploat the system sparsity under
impulsive notse environment. The general update rule using
the gradient descent 15 used for all the investigated algonthms.

The paper 15 orgamized as follows. Section IT describes the
system idennfication model and reviews the conventional
LMMN algonthm. In Section I the proposed modified
IMMN algorithum 15 deraved wihich 1s robust wder mspulsive




environments, To promote system sparsity, ZA-SLMMN and
RZA-SLMMN sparse algorithms are proposed in Section TV,
Stmulation results are shown in Section V. Sectica VI presents
the conclusion of the paper.

11 DESCRIPTION OF SYSTEM MODEL AND LMMN ALGORITHM
Let us consider the system identification model as shown
mFig. 1.
The output of the unknown system 1s descnbed as

din)= xr(nﬂ’m. +=vinl, (1)

where. xfi) = [xin).xin=1)...xin-L +h]fdc|mes an IxJ
mput  signal vector and WQI:["b""I“"“'L-l]ri’ an
unknown system weight vector. The system noise v

consists of white Gaussian poise and impulsive noise. The
error signal 15 defined as

efm)=dn) - yin)=dn)- T (nWin-1), (2)
where, v(n) 15 the output of the adaptive filter Win)
The cost function of the LMMN alganithm 1s gaven by

Jmm)-%f{ez(mﬁl—;—“-fk‘(ml (3)

which is a combination of LMS and LMF algorithm cost
functions and /4 is the mixing parameter, 0 <4</,

The LMMN weight update equation 15

W (n=1) = W (= ¥y Ty gy ()

=Winl+ uelnl‘i +(1=de’ Inl#lnl. (4)
where y is the step-siz¢ of LMMN algorithm,

i, MODIFIED LMMN ALGORITHM BASED ON SIGMOID
FUNCTION

The sigmoxd function 1s defined as 1 [25]. [26]

Sin)= :gmLtJ Lll.!l.\"")l= — aJI

Ive o™ + @

where a is the steepness parameter of the sigmoid function.
The basic idea of using sigmoid is to exploit the saturation
property of the nonlineanity of sigmoid function. The same
framework was used in [I19] and several robust adaptive
filtering algonithms for smpulsive noise scenarios were
proposed.
The modified cost function of the LMMN algorithm based
o (5 1s given by
1 1
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On differennating the sigmoad TMMN (SLMMN) cost
function (6) with respect to W) yields

: =1 n)
SIMMN
v o =
W oy SIMMN (1) = — 55—
_1_ asm I apa
@ & il W)

=Sm[1-S00]% gl rprey (7

The weight update equation of the proposed SLMMN
algorithm 1s given by

W{n+l)=W(n)-ye'",-m‘.lwml. (£
Substitutmg (7) mto (8). we obtain

W i+ 1) =Wins= uSte) 1= S0J oo T prprge ™
; ! 2
=W+ uStnifl- Slm]ﬂnl{t +(1-ase” (m&rm). 9)
[ 1 =
where. St = sgm[ai-é( e m ‘ + lT'{-l e )”

- i (10)
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IV. PROPOSED SPARSE SLMNIN ALGORITHMS
To exploit the system sparsity, two sparse algonthms are
proposed by introducing the (l-nom and log-sum penalties
wto the SLMMN namely. Zero Attracting SLMMN (ZA-
SLMMN) and Reweighted Zero Attracting SLMMN (RZA-
SLMMN) slgorithms respectively.
4. Zero Attvacring SLMMN (ZA-SLMMN) Algovithm
The cost function of ZA-SLMMN algonthm is the
following
Jz‘_wlll)zjwl'll+ TZ('“""‘I (ll)
where y5, is the regularization parameter balancing the
estimarion error and [, .

The ZA-SLMMN algonithm update 1s defined as

Wineli=Wim-p¥p. Joy ape™  (12)

where,
s aJ )
G _ ze staan
W’ Za-sEapev ) = —= 5 e—
aJ, i

) ;
Wy T izee W) (13)



Using (7) m (13) and substituting o (12). we obtam the
weight updation of the proposed ZA-SLMMN algorithm.
Winsl)=W(ini+ uSinifl -Slm]c(nl{). (=i mlirlnl

-pzysEni Win,

where, sgn(.) i the sigmun function, gz, = 7y, and

Smb:;xm[a{%;{e"lm) 1—-{0 ln)] Z4|’anl}} (1%

B Reweighted Zevo Artracting SLMMN (RZA-SLMMN]
Algorithm
The cost function of RZA-SLMMN algonthm is obtained
by introducing the log-sum penalty [27] mto the SLMMN cost
function as follows:

(14)

-’Rzawmo/""-’mm‘")ﬂmlg"’d’ +epzadwmnl) (16)
1=0
where TRZA 1S the regulanzaton parameter

The weight update equation of RZA-SLMMN algorithm 1s
denived as

Win+li= n‘rm-w,,.,”,rw_w.nu. (amn

On differentiating the second tenm m (17) with respect to

Win, yelds the following equation that corresponds to the
weight updation of the proposed RZA-SIMMN algortha,

Winei)=Winl+uSin)[1-Stni] eml{«' +(1-7pe? m)}mr;
p sgniWin)i (18)
“PRZA il
l+z RZA‘" )

whete. pp7y =17 Rz4% R4

=y L-1
snus.w{a{%[ e |+¥|~¢‘m]+ 'Eafog{zukz'ln;mlﬂ
(19)

V. SIMULATION RESULTS

The performance of the proposed SLMMN algoithms is
evaluated in the system identification scenario. The Matlab
codes of the ptoposed algonthms  ar¢  avamlable at
lattp falbu SOwebs com'tspl019 codes rar.

The unknown system and the filter length are setto L= 16
and the system sparsity of K is chosen from (1. 4, 8] The
correluted (colored) mput signal is gencrated by fltering a unit
variance o =1(0 dB) Gaussian white noise through an
AR(1) firsteorder autoregressive system having a pole at 0.8,
The system noise v(n) contmns white Gaussian noise with
SNR = 20dB and Bemoulb-Gansstan (B-G) dismibuzed
impulsive noise generated as qfn)=bfniv,(n). The binary
process,  Biml 15 dessmbed by  the  probabality

pidimi=1=P, pibini=0)=1-P, where P s the
probability of eceurrence of the impulsive noise [16]. V() v
assuned 10 be a zerommean white Gaussian nowse with
vanance a:? The hized q deviaton (NMSD)

15 wed to emmnte the performance of the proposed algorithms
and 1s defined as follows;

|u oo m;r
Prond;

L B

The results for 100 trials are averaged i all samulations. In
order to show the effectiveness of the SLMMN
algorithms, a companison with the LMP algonthms 1s
performed, The sunulation parameters setting for the proposed
algorithms are as follows;

u=004, P=001, 4=05, o~ =104 {2 @a=08.

NMSD(m=10l0g (dB) 20)

P74 =107, PRZ4 =110~ and Epr =20

From Figs. 2, 3 and 4, it can be seen that the SLMMN,
ZA-SLMMN and RZA-SLMMN yield better steady state
performiances than the sparse LMP algorithms (ZA-LMP and
RZA-IMP). while the LMMN algoritlun does not converge
the presence of mpulsive noise. Hence, the proposed
algorithms are robust agamst impulsive noise and are capable
of handling the system with different sparsity levels. K={1. 4,
8}, The RZA-SLMMN algorithm exhibits superior
performance and achieves the lowest steady-state error in all

the cases.
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Fig. 2. NMSD companscn of the SLAMMN algonthums for the
syviem W) spagsity K =1 aod in the presence of empulseve notse
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Fig 3 NMSD comspanison of e progosed SLMMN alponithuss for the
system weth sparsaty X =4 2and in the presence of unpulsive noise

It can be noticed from Fig § that increasing the step-size
value y leads to an increased convergence rate of the
proposed SLMMN algonithin. but alse results m hugh steady-
state emvor.

As can be seen from Fig 6. the greater the stecpacss
parmeter a of the sigmoid function. the lower is the steady-
state error musadjustment and slower the convergence of the
SLMMN. Dependmg on the particular practical application,
the prop of the p 'o(lheSLM\Nulgmdm
cnn hgl’ly A ‘he ' d’ Aed 1 . &
NMSD performancs is needed,
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Fig 6. NMSD of the proposed SLMMN algonthm with diffesest o

VI, CoNcLusioN

It is known that the existing IMMN algorithm fails 1o
converge m the presence of non-Gaussian ampulsive
interferences. Several algorithms using the sigmoid function
are proposed: the SLMMN, the ZA-SIMMN and the RZA-
SLMMN algorithuns. It 15 shown that the proposed algorithums
are capnble of combating impulsive noise and estimating
effectively the system with different levels of spamity nnd
achicves a lower steady-state misadjustment when
with competing algorithins.
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